Vector Optimized Library of Kernels 3.1.0
Architecture-tuned implementations of math kernels
volk_32fc_s32f_power_32fc.h
Go to the documentation of this file.
1/* -*- c++ -*- */
2/*
3 * Copyright 2012, 2014 Free Software Foundation, Inc.
4 *
5 * This file is part of VOLK
6 *
7 * SPDX-License-Identifier: LGPL-3.0-or-later
8 */
9
42#ifndef INCLUDED_volk_32fc_s32f_power_32fc_a_H
43#define INCLUDED_volk_32fc_s32f_power_32fc_a_H
44
45#include <inttypes.h>
46#include <math.h>
47#include <stdio.h>
48
51 const float power)
52{
53 const float arg = power * atan2f(lv_creal(exp), lv_cimag(exp));
54 const float mag =
55 powf(lv_creal(exp) * lv_creal(exp) + lv_cimag(exp) * lv_cimag(exp), power / 2);
56 return mag * lv_cmake(-cosf(arg), sinf(arg));
57}
58
59#ifdef LV_HAVE_SSE
60#include <xmmintrin.h>
61
62#ifdef LV_HAVE_LIB_SIMDMATH
63#include <simdmath.h>
64#endif /* LV_HAVE_LIB_SIMDMATH */
65
66static inline void volk_32fc_s32f_power_32fc_a_sse(lv_32fc_t* cVector,
67 const lv_32fc_t* aVector,
68 const float power,
69 unsigned int num_points)
70{
71 unsigned int number = 0;
72
73 lv_32fc_t* cPtr = cVector;
74 const lv_32fc_t* aPtr = aVector;
75
76#ifdef LV_HAVE_LIB_SIMDMATH
77 const unsigned int quarterPoints = num_points / 4;
78 __m128 vPower = _mm_set_ps1(power);
79
80 __m128 cplxValue1, cplxValue2, magnitude, phase, iValue, qValue;
81 for (; number < quarterPoints; number++) {
82
83 cplxValue1 = _mm_load_ps((float*)aPtr);
84 aPtr += 2;
85
86 cplxValue2 = _mm_load_ps((float*)aPtr);
87 aPtr += 2;
88
89 // Convert to polar coordinates
90
91 // Arrange in i1i2i3i4 format
92 iValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2, 0, 2, 0));
93 // Arrange in q1q2q3q4 format
94 qValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(3, 1, 3, 1));
95
96 phase = atan2f4(qValue, iValue); // Calculate the Phase
97
98 magnitude = _mm_sqrt_ps(
99 _mm_add_ps(_mm_mul_ps(iValue, iValue),
100 _mm_mul_ps(qValue, qValue))); // Calculate the magnitude by square
101 // rooting the added I2 and Q2 values
102
103 // Now calculate the power of the polar coordinate data
104 magnitude = powf4(magnitude, vPower); // Take the magnitude to the specified power
105
106 phase = _mm_mul_ps(phase, vPower); // Multiply the phase by the specified power
107
108 // Convert back to cartesian coordinates
109 iValue = _mm_mul_ps(cosf4(phase),
110 magnitude); // Multiply the cos of the phase by the magnitude
111 qValue = _mm_mul_ps(sinf4(phase),
112 magnitude); // Multiply the sin of the phase by the magnitude
113
114 cplxValue1 =
115 _mm_unpacklo_ps(iValue, qValue); // Interleave the lower two i & q values
116 cplxValue2 =
117 _mm_unpackhi_ps(iValue, qValue); // Interleave the upper two i & q values
118
119 _mm_store_ps((float*)cPtr,
120 cplxValue1); // Store the results back into the C container
121
122 cPtr += 2;
123
124 _mm_store_ps((float*)cPtr,
125 cplxValue2); // Store the results back into the C container
126
127 cPtr += 2;
128 }
129
130 number = quarterPoints * 4;
131#endif /* LV_HAVE_LIB_SIMDMATH */
132
133 for (; number < num_points; number++) {
134 *cPtr++ = __volk_s32fc_s32f_power_s32fc_a((*aPtr++), power);
135 }
136}
137#endif /* LV_HAVE_SSE */
138
139
140#ifdef LV_HAVE_GENERIC
141
143 const lv_32fc_t* aVector,
144 const float power,
145 unsigned int num_points)
146{
147 lv_32fc_t* cPtr = cVector;
148 const lv_32fc_t* aPtr = aVector;
149 unsigned int number = 0;
150
151 for (number = 0; number < num_points; number++) {
152 *cPtr++ = __volk_s32fc_s32f_power_s32fc_a((*aPtr++), power);
153 }
154}
155
156#endif /* LV_HAVE_GENERIC */
157
158
159#endif /* INCLUDED_volk_32fc_s32f_power_32fc_a_H */