LLVM OpenMP* Runtime Library
kmp_affinity.cpp
1/*
2 * kmp_affinity.cpp -- affinity management
3 */
4
5//===----------------------------------------------------------------------===//
6//
7// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8// See https://llvm.org/LICENSE.txt for license information.
9// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10//
11//===----------------------------------------------------------------------===//
12
13#include "kmp.h"
14#include "kmp_affinity.h"
15#include "kmp_i18n.h"
16#include "kmp_io.h"
17#include "kmp_str.h"
18#include "kmp_wrapper_getpid.h"
19#if KMP_USE_HIER_SCHED
20#include "kmp_dispatch_hier.h"
21#endif
22#if KMP_USE_HWLOC
23// Copied from hwloc
24#define HWLOC_GROUP_KIND_INTEL_MODULE 102
25#define HWLOC_GROUP_KIND_INTEL_TILE 103
26#define HWLOC_GROUP_KIND_INTEL_DIE 104
27#define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220
28#endif
29#include <ctype.h>
30
31// The machine topology
32kmp_topology_t *__kmp_topology = nullptr;
33// KMP_HW_SUBSET environment variable
34kmp_hw_subset_t *__kmp_hw_subset = nullptr;
35
36// Store the real or imagined machine hierarchy here
37static hierarchy_info machine_hierarchy;
38
39void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); }
40
41void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
42 kmp_uint32 depth;
43 // The test below is true if affinity is available, but set to "none". Need to
44 // init on first use of hierarchical barrier.
45 if (TCR_1(machine_hierarchy.uninitialized))
46 machine_hierarchy.init(nproc);
47
48 // Adjust the hierarchy in case num threads exceeds original
49 if (nproc > machine_hierarchy.base_num_threads)
50 machine_hierarchy.resize(nproc);
51
52 depth = machine_hierarchy.depth;
53 KMP_DEBUG_ASSERT(depth > 0);
54
55 thr_bar->depth = depth;
56 __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1,
57 &(thr_bar->base_leaf_kids));
58 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
59}
60
61static int nCoresPerPkg, nPackages;
62static int __kmp_nThreadsPerCore;
63#ifndef KMP_DFLT_NTH_CORES
64static int __kmp_ncores;
65#endif
66
67const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) {
68 switch (type) {
69 case KMP_HW_SOCKET:
70 return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket));
71 case KMP_HW_DIE:
72 return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die));
73 case KMP_HW_MODULE:
74 return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module));
75 case KMP_HW_TILE:
76 return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile));
77 case KMP_HW_NUMA:
78 return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain));
79 case KMP_HW_L3:
80 return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache));
81 case KMP_HW_L2:
82 return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache));
83 case KMP_HW_L1:
84 return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache));
85 case KMP_HW_LLC:
86 return ((plural) ? KMP_I18N_STR(LLCaches) : KMP_I18N_STR(LLCache));
87 case KMP_HW_CORE:
88 return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core));
89 case KMP_HW_THREAD:
90 return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread));
91 case KMP_HW_PROC_GROUP:
92 return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup));
93 }
94 return KMP_I18N_STR(Unknown);
95}
96
97const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) {
98 switch (type) {
99 case KMP_HW_SOCKET:
100 return ((plural) ? "sockets" : "socket");
101 case KMP_HW_DIE:
102 return ((plural) ? "dice" : "die");
103 case KMP_HW_MODULE:
104 return ((plural) ? "modules" : "module");
105 case KMP_HW_TILE:
106 return ((plural) ? "tiles" : "tile");
107 case KMP_HW_NUMA:
108 return ((plural) ? "numa_domains" : "numa_domain");
109 case KMP_HW_L3:
110 return ((plural) ? "l3_caches" : "l3_cache");
111 case KMP_HW_L2:
112 return ((plural) ? "l2_caches" : "l2_cache");
113 case KMP_HW_L1:
114 return ((plural) ? "l1_caches" : "l1_cache");
115 case KMP_HW_LLC:
116 return ((plural) ? "ll_caches" : "ll_cache");
117 case KMP_HW_CORE:
118 return ((plural) ? "cores" : "core");
119 case KMP_HW_THREAD:
120 return ((plural) ? "threads" : "thread");
121 case KMP_HW_PROC_GROUP:
122 return ((plural) ? "proc_groups" : "proc_group");
123 }
124 return ((plural) ? "unknowns" : "unknown");
125}
126
127const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type) {
128 switch (type) {
129 case KMP_HW_CORE_TYPE_UNKNOWN:
130 return "unknown";
131#if KMP_ARCH_X86 || KMP_ARCH_X86_64
132 case KMP_HW_CORE_TYPE_ATOM:
133 return "Intel Atom(R) processor";
134 case KMP_HW_CORE_TYPE_CORE:
135 return "Intel(R) Core(TM) processor";
136#endif
137 }
138 return "unknown";
139}
140
141#if KMP_AFFINITY_SUPPORTED
142// If affinity is supported, check the affinity
143// verbose and warning flags before printing warning
144#define KMP_AFF_WARNING(...) \
145 if (__kmp_affinity_verbose || \
146 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { \
147 KMP_WARNING(__VA_ARGS__); \
148 }
149#else
150#define KMP_AFF_WARNING KMP_WARNING
151#endif
152
154// kmp_hw_thread_t methods
155int kmp_hw_thread_t::compare_ids(const void *a, const void *b) {
156 const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a;
157 const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b;
158 int depth = __kmp_topology->get_depth();
159 for (int level = 0; level < depth; ++level) {
160 if (ahwthread->ids[level] < bhwthread->ids[level])
161 return -1;
162 else if (ahwthread->ids[level] > bhwthread->ids[level])
163 return 1;
164 }
165 if (ahwthread->os_id < bhwthread->os_id)
166 return -1;
167 else if (ahwthread->os_id > bhwthread->os_id)
168 return 1;
169 return 0;
170}
171
172#if KMP_AFFINITY_SUPPORTED
173int kmp_hw_thread_t::compare_compact(const void *a, const void *b) {
174 int i;
175 const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a;
176 const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b;
177 int depth = __kmp_topology->get_depth();
178 KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0);
179 KMP_DEBUG_ASSERT(__kmp_affinity_compact <= depth);
180 for (i = 0; i < __kmp_affinity_compact; i++) {
181 int j = depth - i - 1;
182 if (aa->sub_ids[j] < bb->sub_ids[j])
183 return -1;
184 if (aa->sub_ids[j] > bb->sub_ids[j])
185 return 1;
186 }
187 for (; i < depth; i++) {
188 int j = i - __kmp_affinity_compact;
189 if (aa->sub_ids[j] < bb->sub_ids[j])
190 return -1;
191 if (aa->sub_ids[j] > bb->sub_ids[j])
192 return 1;
193 }
194 return 0;
195}
196#endif
197
198void kmp_hw_thread_t::print() const {
199 int depth = __kmp_topology->get_depth();
200 printf("%4d ", os_id);
201 for (int i = 0; i < depth; ++i) {
202 printf("%4d ", ids[i]);
203 }
204 if (attrs) {
205 if (attrs.is_core_type_valid())
206 printf(" (%s)", __kmp_hw_get_core_type_string(attrs.get_core_type()));
207 if (attrs.is_core_eff_valid())
208 printf(" (eff=%d)", attrs.get_core_eff());
209 }
210 printf("\n");
211}
212
214// kmp_topology_t methods
215
216// Add a layer to the topology based on the ids. Assume the topology
217// is perfectly nested (i.e., so no object has more than one parent)
218void kmp_topology_t::_insert_layer(kmp_hw_t type, const int *ids) {
219 // Figure out where the layer should go by comparing the ids of the current
220 // layers with the new ids
221 int target_layer;
222 int previous_id = kmp_hw_thread_t::UNKNOWN_ID;
223 int previous_new_id = kmp_hw_thread_t::UNKNOWN_ID;
224
225 // Start from the highest layer and work down to find target layer
226 // If new layer is equal to another layer then put the new layer above
227 for (target_layer = 0; target_layer < depth; ++target_layer) {
228 bool layers_equal = true;
229 bool strictly_above_target_layer = false;
230 for (int i = 0; i < num_hw_threads; ++i) {
231 int id = hw_threads[i].ids[target_layer];
232 int new_id = ids[i];
233 if (id != previous_id && new_id == previous_new_id) {
234 // Found the layer we are strictly above
235 strictly_above_target_layer = true;
236 layers_equal = false;
237 break;
238 } else if (id == previous_id && new_id != previous_new_id) {
239 // Found a layer we are below. Move to next layer and check.
240 layers_equal = false;
241 break;
242 }
243 previous_id = id;
244 previous_new_id = new_id;
245 }
246 if (strictly_above_target_layer || layers_equal)
247 break;
248 }
249
250 // Found the layer we are above. Now move everything to accommodate the new
251 // layer. And put the new ids and type into the topology.
252 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j)
253 types[j] = types[i];
254 types[target_layer] = type;
255 for (int k = 0; k < num_hw_threads; ++k) {
256 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j)
257 hw_threads[k].ids[j] = hw_threads[k].ids[i];
258 hw_threads[k].ids[target_layer] = ids[k];
259 }
260 equivalent[type] = type;
261 depth++;
262}
263
264#if KMP_GROUP_AFFINITY
265// Insert the Windows Processor Group structure into the topology
266void kmp_topology_t::_insert_windows_proc_groups() {
267 // Do not insert the processor group structure for a single group
268 if (__kmp_num_proc_groups == 1)
269 return;
270 kmp_affin_mask_t *mask;
271 int *ids = (int *)__kmp_allocate(sizeof(int) * num_hw_threads);
272 KMP_CPU_ALLOC(mask);
273 for (int i = 0; i < num_hw_threads; ++i) {
274 KMP_CPU_ZERO(mask);
275 KMP_CPU_SET(hw_threads[i].os_id, mask);
276 ids[i] = __kmp_get_proc_group(mask);
277 }
278 KMP_CPU_FREE(mask);
279 _insert_layer(KMP_HW_PROC_GROUP, ids);
280 __kmp_free(ids);
281}
282#endif
283
284// Remove layers that don't add information to the topology.
285// This is done by having the layer take on the id = UNKNOWN_ID (-1)
286void kmp_topology_t::_remove_radix1_layers() {
287 int preference[KMP_HW_LAST];
288 int top_index1, top_index2;
289 // Set up preference associative array
290 preference[KMP_HW_SOCKET] = 110;
291 preference[KMP_HW_PROC_GROUP] = 100;
292 preference[KMP_HW_CORE] = 95;
293 preference[KMP_HW_THREAD] = 90;
294 preference[KMP_HW_NUMA] = 85;
295 preference[KMP_HW_DIE] = 80;
296 preference[KMP_HW_TILE] = 75;
297 preference[KMP_HW_MODULE] = 73;
298 preference[KMP_HW_L3] = 70;
299 preference[KMP_HW_L2] = 65;
300 preference[KMP_HW_L1] = 60;
301 preference[KMP_HW_LLC] = 5;
302 top_index1 = 0;
303 top_index2 = 1;
304 while (top_index1 < depth - 1 && top_index2 < depth) {
305 kmp_hw_t type1 = types[top_index1];
306 kmp_hw_t type2 = types[top_index2];
307 KMP_ASSERT_VALID_HW_TYPE(type1);
308 KMP_ASSERT_VALID_HW_TYPE(type2);
309 // Do not allow the three main topology levels (sockets, cores, threads) to
310 // be compacted down
311 if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE ||
312 type1 == KMP_HW_SOCKET) &&
313 (type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE ||
314 type2 == KMP_HW_SOCKET)) {
315 top_index1 = top_index2++;
316 continue;
317 }
318 bool radix1 = true;
319 bool all_same = true;
320 int id1 = hw_threads[0].ids[top_index1];
321 int id2 = hw_threads[0].ids[top_index2];
322 int pref1 = preference[type1];
323 int pref2 = preference[type2];
324 for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) {
325 if (hw_threads[hwidx].ids[top_index1] == id1 &&
326 hw_threads[hwidx].ids[top_index2] != id2) {
327 radix1 = false;
328 break;
329 }
330 if (hw_threads[hwidx].ids[top_index2] != id2)
331 all_same = false;
332 id1 = hw_threads[hwidx].ids[top_index1];
333 id2 = hw_threads[hwidx].ids[top_index2];
334 }
335 if (radix1) {
336 // Select the layer to remove based on preference
337 kmp_hw_t remove_type, keep_type;
338 int remove_layer, remove_layer_ids;
339 if (pref1 > pref2) {
340 remove_type = type2;
341 remove_layer = remove_layer_ids = top_index2;
342 keep_type = type1;
343 } else {
344 remove_type = type1;
345 remove_layer = remove_layer_ids = top_index1;
346 keep_type = type2;
347 }
348 // If all the indexes for the second (deeper) layer are the same.
349 // e.g., all are zero, then make sure to keep the first layer's ids
350 if (all_same)
351 remove_layer_ids = top_index2;
352 // Remove radix one type by setting the equivalence, removing the id from
353 // the hw threads and removing the layer from types and depth
354 set_equivalent_type(remove_type, keep_type);
355 for (int idx = 0; idx < num_hw_threads; ++idx) {
356 kmp_hw_thread_t &hw_thread = hw_threads[idx];
357 for (int d = remove_layer_ids; d < depth - 1; ++d)
358 hw_thread.ids[d] = hw_thread.ids[d + 1];
359 }
360 for (int idx = remove_layer; idx < depth - 1; ++idx)
361 types[idx] = types[idx + 1];
362 depth--;
363 } else {
364 top_index1 = top_index2++;
365 }
366 }
367 KMP_ASSERT(depth > 0);
368}
369
370void kmp_topology_t::_set_last_level_cache() {
371 if (get_equivalent_type(KMP_HW_L3) != KMP_HW_UNKNOWN)
372 set_equivalent_type(KMP_HW_LLC, KMP_HW_L3);
373 else if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
374 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
375#if KMP_MIC_SUPPORTED
376 else if (__kmp_mic_type == mic3) {
377 if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
378 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
379 else if (get_equivalent_type(KMP_HW_TILE) != KMP_HW_UNKNOWN)
380 set_equivalent_type(KMP_HW_LLC, KMP_HW_TILE);
381 // L2/Tile wasn't detected so just say L1
382 else
383 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
384 }
385#endif
386 else if (get_equivalent_type(KMP_HW_L1) != KMP_HW_UNKNOWN)
387 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
388 // Fallback is to set last level cache to socket or core
389 if (get_equivalent_type(KMP_HW_LLC) == KMP_HW_UNKNOWN) {
390 if (get_equivalent_type(KMP_HW_SOCKET) != KMP_HW_UNKNOWN)
391 set_equivalent_type(KMP_HW_LLC, KMP_HW_SOCKET);
392 else if (get_equivalent_type(KMP_HW_CORE) != KMP_HW_UNKNOWN)
393 set_equivalent_type(KMP_HW_LLC, KMP_HW_CORE);
394 }
395 KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN);
396}
397
398// Gather the count of each topology layer and the ratio
399void kmp_topology_t::_gather_enumeration_information() {
400 int previous_id[KMP_HW_LAST];
401 int max[KMP_HW_LAST];
402
403 for (int i = 0; i < depth; ++i) {
404 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID;
405 max[i] = 0;
406 count[i] = 0;
407 ratio[i] = 0;
408 }
409 int core_level = get_level(KMP_HW_CORE);
410 for (int i = 0; i < num_hw_threads; ++i) {
411 kmp_hw_thread_t &hw_thread = hw_threads[i];
412 for (int layer = 0; layer < depth; ++layer) {
413 int id = hw_thread.ids[layer];
414 if (id != previous_id[layer]) {
415 // Add an additional increment to each count
416 for (int l = layer; l < depth; ++l)
417 count[l]++;
418 // Keep track of topology layer ratio statistics
419 max[layer]++;
420 for (int l = layer + 1; l < depth; ++l) {
421 if (max[l] > ratio[l])
422 ratio[l] = max[l];
423 max[l] = 1;
424 }
425 // Figure out the number of different core types
426 // and efficiencies for hybrid CPUs
427 if (__kmp_is_hybrid_cpu() && core_level >= 0 && layer <= core_level) {
428 if (hw_thread.attrs.is_core_eff_valid() &&
429 hw_thread.attrs.core_eff >= num_core_efficiencies) {
430 // Because efficiencies can range from 0 to max efficiency - 1,
431 // the number of efficiencies is max efficiency + 1
432 num_core_efficiencies = hw_thread.attrs.core_eff + 1;
433 }
434 if (hw_thread.attrs.is_core_type_valid()) {
435 bool found = false;
436 for (int j = 0; j < num_core_types; ++j) {
437 if (hw_thread.attrs.get_core_type() == core_types[j]) {
438 found = true;
439 break;
440 }
441 }
442 if (!found) {
443 KMP_ASSERT(num_core_types < KMP_HW_MAX_NUM_CORE_TYPES);
444 core_types[num_core_types++] = hw_thread.attrs.get_core_type();
445 }
446 }
447 }
448 break;
449 }
450 }
451 for (int layer = 0; layer < depth; ++layer) {
452 previous_id[layer] = hw_thread.ids[layer];
453 }
454 }
455 for (int layer = 0; layer < depth; ++layer) {
456 if (max[layer] > ratio[layer])
457 ratio[layer] = max[layer];
458 }
459}
460
461int kmp_topology_t::_get_ncores_with_attr(const kmp_hw_attr_t &attr,
462 int above_level,
463 bool find_all) const {
464 int current, current_max;
465 int previous_id[KMP_HW_LAST];
466 for (int i = 0; i < depth; ++i)
467 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID;
468 int core_level = get_level(KMP_HW_CORE);
469 if (find_all)
470 above_level = -1;
471 KMP_ASSERT(above_level < core_level);
472 current_max = 0;
473 current = 0;
474 for (int i = 0; i < num_hw_threads; ++i) {
475 kmp_hw_thread_t &hw_thread = hw_threads[i];
476 if (!find_all && hw_thread.ids[above_level] != previous_id[above_level]) {
477 if (current > current_max)
478 current_max = current;
479 current = hw_thread.attrs.contains(attr);
480 } else {
481 for (int level = above_level + 1; level <= core_level; ++level) {
482 if (hw_thread.ids[level] != previous_id[level]) {
483 if (hw_thread.attrs.contains(attr))
484 current++;
485 break;
486 }
487 }
488 }
489 for (int level = 0; level < depth; ++level)
490 previous_id[level] = hw_thread.ids[level];
491 }
492 if (current > current_max)
493 current_max = current;
494 return current_max;
495}
496
497// Find out if the topology is uniform
498void kmp_topology_t::_discover_uniformity() {
499 int num = 1;
500 for (int level = 0; level < depth; ++level)
501 num *= ratio[level];
502 flags.uniform = (num == count[depth - 1]);
503}
504
505// Set all the sub_ids for each hardware thread
506void kmp_topology_t::_set_sub_ids() {
507 int previous_id[KMP_HW_LAST];
508 int sub_id[KMP_HW_LAST];
509
510 for (int i = 0; i < depth; ++i) {
511 previous_id[i] = -1;
512 sub_id[i] = -1;
513 }
514 for (int i = 0; i < num_hw_threads; ++i) {
515 kmp_hw_thread_t &hw_thread = hw_threads[i];
516 // Setup the sub_id
517 for (int j = 0; j < depth; ++j) {
518 if (hw_thread.ids[j] != previous_id[j]) {
519 sub_id[j]++;
520 for (int k = j + 1; k < depth; ++k) {
521 sub_id[k] = 0;
522 }
523 break;
524 }
525 }
526 // Set previous_id
527 for (int j = 0; j < depth; ++j) {
528 previous_id[j] = hw_thread.ids[j];
529 }
530 // Set the sub_ids field
531 for (int j = 0; j < depth; ++j) {
532 hw_thread.sub_ids[j] = sub_id[j];
533 }
534 }
535}
536
537void kmp_topology_t::_set_globals() {
538 // Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores
539 int core_level, thread_level, package_level;
540 package_level = get_level(KMP_HW_SOCKET);
541#if KMP_GROUP_AFFINITY
542 if (package_level == -1)
543 package_level = get_level(KMP_HW_PROC_GROUP);
544#endif
545 core_level = get_level(KMP_HW_CORE);
546 thread_level = get_level(KMP_HW_THREAD);
547
548 KMP_ASSERT(core_level != -1);
549 KMP_ASSERT(thread_level != -1);
550
551 __kmp_nThreadsPerCore = calculate_ratio(thread_level, core_level);
552 if (package_level != -1) {
553 nCoresPerPkg = calculate_ratio(core_level, package_level);
554 nPackages = get_count(package_level);
555 } else {
556 // assume one socket
557 nCoresPerPkg = get_count(core_level);
558 nPackages = 1;
559 }
560#ifndef KMP_DFLT_NTH_CORES
561 __kmp_ncores = get_count(core_level);
562#endif
563}
564
565kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth,
566 const kmp_hw_t *types) {
567 kmp_topology_t *retval;
568 // Allocate all data in one large allocation
569 size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc +
570 sizeof(int) * (size_t)KMP_HW_LAST * 3;
571 char *bytes = (char *)__kmp_allocate(size);
572 retval = (kmp_topology_t *)bytes;
573 if (nproc > 0) {
574 retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t));
575 } else {
576 retval->hw_threads = nullptr;
577 }
578 retval->num_hw_threads = nproc;
579 retval->depth = ndepth;
580 int *arr =
581 (int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc);
582 retval->types = (kmp_hw_t *)arr;
583 retval->ratio = arr + (size_t)KMP_HW_LAST;
584 retval->count = arr + 2 * (size_t)KMP_HW_LAST;
585 retval->num_core_efficiencies = 0;
586 retval->num_core_types = 0;
587 for (int i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i)
588 retval->core_types[i] = KMP_HW_CORE_TYPE_UNKNOWN;
589 KMP_FOREACH_HW_TYPE(type) { retval->equivalent[type] = KMP_HW_UNKNOWN; }
590 for (int i = 0; i < ndepth; ++i) {
591 retval->types[i] = types[i];
592 retval->equivalent[types[i]] = types[i];
593 }
594 return retval;
595}
596
597void kmp_topology_t::deallocate(kmp_topology_t *topology) {
598 if (topology)
599 __kmp_free(topology);
600}
601
602bool kmp_topology_t::check_ids() const {
603 // Assume ids have been sorted
604 if (num_hw_threads == 0)
605 return true;
606 for (int i = 1; i < num_hw_threads; ++i) {
607 kmp_hw_thread_t &current_thread = hw_threads[i];
608 kmp_hw_thread_t &previous_thread = hw_threads[i - 1];
609 bool unique = false;
610 for (int j = 0; j < depth; ++j) {
611 if (previous_thread.ids[j] != current_thread.ids[j]) {
612 unique = true;
613 break;
614 }
615 }
616 if (unique)
617 continue;
618 return false;
619 }
620 return true;
621}
622
623void kmp_topology_t::dump() const {
624 printf("***********************\n");
625 printf("*** __kmp_topology: ***\n");
626 printf("***********************\n");
627 printf("* depth: %d\n", depth);
628
629 printf("* types: ");
630 for (int i = 0; i < depth; ++i)
631 printf("%15s ", __kmp_hw_get_keyword(types[i]));
632 printf("\n");
633
634 printf("* ratio: ");
635 for (int i = 0; i < depth; ++i) {
636 printf("%15d ", ratio[i]);
637 }
638 printf("\n");
639
640 printf("* count: ");
641 for (int i = 0; i < depth; ++i) {
642 printf("%15d ", count[i]);
643 }
644 printf("\n");
645
646 printf("* num_core_eff: %d\n", num_core_efficiencies);
647 printf("* num_core_types: %d\n", num_core_types);
648 printf("* core_types: ");
649 for (int i = 0; i < num_core_types; ++i)
650 printf("%3d ", core_types[i]);
651 printf("\n");
652
653 printf("* equivalent map:\n");
654 KMP_FOREACH_HW_TYPE(i) {
655 const char *key = __kmp_hw_get_keyword(i);
656 const char *value = __kmp_hw_get_keyword(equivalent[i]);
657 printf("%-15s -> %-15s\n", key, value);
658 }
659
660 printf("* uniform: %s\n", (is_uniform() ? "Yes" : "No"));
661
662 printf("* num_hw_threads: %d\n", num_hw_threads);
663 printf("* hw_threads:\n");
664 for (int i = 0; i < num_hw_threads; ++i) {
665 hw_threads[i].print();
666 }
667 printf("***********************\n");
668}
669
670void kmp_topology_t::print(const char *env_var) const {
671 kmp_str_buf_t buf;
672 int print_types_depth;
673 __kmp_str_buf_init(&buf);
674 kmp_hw_t print_types[KMP_HW_LAST + 2];
675
676 // Num Available Threads
677 KMP_INFORM(AvailableOSProc, env_var, num_hw_threads);
678
679 // Uniform or not
680 if (is_uniform()) {
681 KMP_INFORM(Uniform, env_var);
682 } else {
683 KMP_INFORM(NonUniform, env_var);
684 }
685
686 // Equivalent types
687 KMP_FOREACH_HW_TYPE(type) {
688 kmp_hw_t eq_type = equivalent[type];
689 if (eq_type != KMP_HW_UNKNOWN && eq_type != type) {
690 KMP_INFORM(AffEqualTopologyTypes, env_var,
691 __kmp_hw_get_catalog_string(type),
692 __kmp_hw_get_catalog_string(eq_type));
693 }
694 }
695
696 // Quick topology
697 KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST);
698 // Create a print types array that always guarantees printing
699 // the core and thread level
700 print_types_depth = 0;
701 for (int level = 0; level < depth; ++level)
702 print_types[print_types_depth++] = types[level];
703 if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) {
704 // Force in the core level for quick topology
705 if (print_types[print_types_depth - 1] == KMP_HW_THREAD) {
706 // Force core before thread e.g., 1 socket X 2 threads/socket
707 // becomes 1 socket X 1 core/socket X 2 threads/socket
708 print_types[print_types_depth - 1] = KMP_HW_CORE;
709 print_types[print_types_depth++] = KMP_HW_THREAD;
710 } else {
711 print_types[print_types_depth++] = KMP_HW_CORE;
712 }
713 }
714 // Always put threads at very end of quick topology
715 if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD)
716 print_types[print_types_depth++] = KMP_HW_THREAD;
717
718 __kmp_str_buf_clear(&buf);
719 kmp_hw_t numerator_type;
720 kmp_hw_t denominator_type = KMP_HW_UNKNOWN;
721 int core_level = get_level(KMP_HW_CORE);
722 int ncores = get_count(core_level);
723
724 for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) {
725 int c;
726 bool plural;
727 numerator_type = print_types[plevel];
728 KMP_ASSERT_VALID_HW_TYPE(numerator_type);
729 if (equivalent[numerator_type] != numerator_type)
730 c = 1;
731 else
732 c = get_ratio(level++);
733 plural = (c > 1);
734 if (plevel == 0) {
735 __kmp_str_buf_print(&buf, "%d %s", c,
736 __kmp_hw_get_catalog_string(numerator_type, plural));
737 } else {
738 __kmp_str_buf_print(&buf, " x %d %s/%s", c,
739 __kmp_hw_get_catalog_string(numerator_type, plural),
740 __kmp_hw_get_catalog_string(denominator_type));
741 }
742 denominator_type = numerator_type;
743 }
744 KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores);
745
746 // Hybrid topology information
747 if (__kmp_is_hybrid_cpu()) {
748 for (int i = 0; i < num_core_types; ++i) {
749 kmp_hw_core_type_t core_type = core_types[i];
750 kmp_hw_attr_t attr;
751 attr.clear();
752 attr.set_core_type(core_type);
753 int ncores = get_ncores_with_attr(attr);
754 if (ncores > 0) {
755 KMP_INFORM(TopologyHybrid, env_var, ncores,
756 __kmp_hw_get_core_type_string(core_type));
757 KMP_ASSERT(num_core_efficiencies <= KMP_HW_MAX_NUM_CORE_EFFS)
758 for (int eff = 0; eff < num_core_efficiencies; ++eff) {
759 attr.set_core_eff(eff);
760 int ncores_with_eff = get_ncores_with_attr(attr);
761 if (ncores_with_eff > 0) {
762 KMP_INFORM(TopologyHybridCoreEff, env_var, ncores_with_eff, eff);
763 }
764 }
765 }
766 }
767 }
768
769 if (num_hw_threads <= 0) {
770 __kmp_str_buf_free(&buf);
771 return;
772 }
773
774 // Full OS proc to hardware thread map
775 KMP_INFORM(OSProcToPhysicalThreadMap, env_var);
776 for (int i = 0; i < num_hw_threads; i++) {
777 __kmp_str_buf_clear(&buf);
778 for (int level = 0; level < depth; ++level) {
779 kmp_hw_t type = types[level];
780 __kmp_str_buf_print(&buf, "%s ", __kmp_hw_get_catalog_string(type));
781 __kmp_str_buf_print(&buf, "%d ", hw_threads[i].ids[level]);
782 }
783 if (__kmp_is_hybrid_cpu())
784 __kmp_str_buf_print(
785 &buf, "(%s)",
786 __kmp_hw_get_core_type_string(hw_threads[i].attrs.get_core_type()));
787 KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str);
788 }
789
790 __kmp_str_buf_free(&buf);
791}
792
793void kmp_topology_t::canonicalize() {
794#if KMP_GROUP_AFFINITY
795 _insert_windows_proc_groups();
796#endif
797 _remove_radix1_layers();
798 _gather_enumeration_information();
799 _discover_uniformity();
800 _set_sub_ids();
801 _set_globals();
802 _set_last_level_cache();
803
804#if KMP_MIC_SUPPORTED
805 // Manually Add L2 = Tile equivalence
806 if (__kmp_mic_type == mic3) {
807 if (get_level(KMP_HW_L2) != -1)
808 set_equivalent_type(KMP_HW_TILE, KMP_HW_L2);
809 else if (get_level(KMP_HW_TILE) != -1)
810 set_equivalent_type(KMP_HW_L2, KMP_HW_TILE);
811 }
812#endif
813
814 // Perform post canonicalization checking
815 KMP_ASSERT(depth > 0);
816 for (int level = 0; level < depth; ++level) {
817 // All counts, ratios, and types must be valid
818 KMP_ASSERT(count[level] > 0 && ratio[level] > 0);
819 KMP_ASSERT_VALID_HW_TYPE(types[level]);
820 // Detected types must point to themselves
821 KMP_ASSERT(equivalent[types[level]] == types[level]);
822 }
823
824#if KMP_AFFINITY_SUPPORTED
825 // Set the number of affinity granularity levels
826 if (__kmp_affinity_gran_levels < 0) {
827 kmp_hw_t gran_type = get_equivalent_type(__kmp_affinity_gran);
828 // Check if user's granularity request is valid
829 if (gran_type == KMP_HW_UNKNOWN) {
830 // First try core, then thread, then package
831 kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET};
832 for (auto g : gran_types) {
833 if (get_equivalent_type(g) != KMP_HW_UNKNOWN) {
834 gran_type = g;
835 break;
836 }
837 }
838 KMP_ASSERT(gran_type != KMP_HW_UNKNOWN);
839 // Warn user what granularity setting will be used instead
840 KMP_AFF_WARNING(AffGranularityBad, "KMP_AFFINITY",
841 __kmp_hw_get_catalog_string(__kmp_affinity_gran),
842 __kmp_hw_get_catalog_string(gran_type));
843 __kmp_affinity_gran = gran_type;
844 }
845#if KMP_GROUP_AFFINITY
846 // If more than one processor group exists, and the level of
847 // granularity specified by the user is too coarse, then the
848 // granularity must be adjusted "down" to processor group affinity
849 // because threads can only exist within one processor group.
850 // For example, if a user sets granularity=socket and there are two
851 // processor groups that cover a socket, then the runtime must
852 // restrict the granularity down to the processor group level.
853 if (__kmp_num_proc_groups > 1) {
854 int gran_depth = get_level(gran_type);
855 int proc_group_depth = get_level(KMP_HW_PROC_GROUP);
856 if (gran_depth >= 0 && proc_group_depth >= 0 &&
857 gran_depth < proc_group_depth) {
858 KMP_AFF_WARNING(AffGranTooCoarseProcGroup, "KMP_AFFINITY",
859 __kmp_hw_get_catalog_string(__kmp_affinity_gran));
860 __kmp_affinity_gran = gran_type = KMP_HW_PROC_GROUP;
861 }
862 }
863#endif
864 __kmp_affinity_gran_levels = 0;
865 for (int i = depth - 1; i >= 0 && get_type(i) != gran_type; --i)
866 __kmp_affinity_gran_levels++;
867 }
868#endif // KMP_AFFINITY_SUPPORTED
869}
870
871// Canonicalize an explicit packages X cores/pkg X threads/core topology
872void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg,
873 int nthreads_per_core, int ncores) {
874 int ndepth = 3;
875 depth = ndepth;
876 KMP_FOREACH_HW_TYPE(i) { equivalent[i] = KMP_HW_UNKNOWN; }
877 for (int level = 0; level < depth; ++level) {
878 count[level] = 0;
879 ratio[level] = 0;
880 }
881 count[0] = npackages;
882 count[1] = ncores;
883 count[2] = __kmp_xproc;
884 ratio[0] = npackages;
885 ratio[1] = ncores_per_pkg;
886 ratio[2] = nthreads_per_core;
887 equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET;
888 equivalent[KMP_HW_CORE] = KMP_HW_CORE;
889 equivalent[KMP_HW_THREAD] = KMP_HW_THREAD;
890 types[0] = KMP_HW_SOCKET;
891 types[1] = KMP_HW_CORE;
892 types[2] = KMP_HW_THREAD;
893 //__kmp_avail_proc = __kmp_xproc;
894 _discover_uniformity();
895}
896
897// Represents running sub IDs for a single core attribute where
898// attribute values have SIZE possibilities.
899template <size_t SIZE, typename IndexFunc> struct kmp_sub_ids_t {
900 int last_level; // last level in topology to consider for sub_ids
901 int sub_id[SIZE]; // The sub ID for a given attribute value
902 int prev_sub_id[KMP_HW_LAST];
903 IndexFunc indexer;
904
905public:
906 kmp_sub_ids_t(int last_level) : last_level(last_level) {
907 KMP_ASSERT(last_level < KMP_HW_LAST);
908 for (size_t i = 0; i < SIZE; ++i)
909 sub_id[i] = -1;
910 for (size_t i = 0; i < KMP_HW_LAST; ++i)
911 prev_sub_id[i] = -1;
912 }
913 void update(const kmp_hw_thread_t &hw_thread) {
914 int idx = indexer(hw_thread);
915 KMP_ASSERT(idx < (int)SIZE);
916 for (int level = 0; level <= last_level; ++level) {
917 if (hw_thread.sub_ids[level] != prev_sub_id[level]) {
918 if (level < last_level)
919 sub_id[idx] = -1;
920 sub_id[idx]++;
921 break;
922 }
923 }
924 for (int level = 0; level <= last_level; ++level)
925 prev_sub_id[level] = hw_thread.sub_ids[level];
926 }
927 int get_sub_id(const kmp_hw_thread_t &hw_thread) const {
928 return sub_id[indexer(hw_thread)];
929 }
930};
931
932static kmp_str_buf_t *
933__kmp_hw_get_catalog_core_string(const kmp_hw_attr_t &attr, kmp_str_buf_t *buf,
934 bool plural) {
935 __kmp_str_buf_init(buf);
936 if (attr.is_core_type_valid())
937 __kmp_str_buf_print(buf, "%s %s",
938 __kmp_hw_get_core_type_string(attr.get_core_type()),
939 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural));
940 else
941 __kmp_str_buf_print(buf, "%s eff=%d",
942 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural),
943 attr.get_core_eff());
944 return buf;
945}
946
947// Apply the KMP_HW_SUBSET envirable to the topology
948// Returns true if KMP_HW_SUBSET filtered any processors
949// otherwise, returns false
950bool kmp_topology_t::filter_hw_subset() {
951 // If KMP_HW_SUBSET wasn't requested, then do nothing.
952 if (!__kmp_hw_subset)
953 return false;
954
955 // First, sort the KMP_HW_SUBSET items by the machine topology
956 __kmp_hw_subset->sort();
957
958 // Check to see if KMP_HW_SUBSET is a valid subset of the detected topology
959 bool using_core_types = false;
960 bool using_core_effs = false;
961 int hw_subset_depth = __kmp_hw_subset->get_depth();
962 kmp_hw_t specified[KMP_HW_LAST];
963 int *topology_levels = (int *)KMP_ALLOCA(sizeof(int) * hw_subset_depth);
964 KMP_ASSERT(hw_subset_depth > 0);
965 KMP_FOREACH_HW_TYPE(i) { specified[i] = KMP_HW_UNKNOWN; }
966 int core_level = get_level(KMP_HW_CORE);
967 for (int i = 0; i < hw_subset_depth; ++i) {
968 int max_count;
969 const kmp_hw_subset_t::item_t &item = __kmp_hw_subset->at(i);
970 int num = item.num[0];
971 int offset = item.offset[0];
972 kmp_hw_t type = item.type;
973 kmp_hw_t equivalent_type = equivalent[type];
974 int level = get_level(type);
975 topology_levels[i] = level;
976
977 // Check to see if current layer is in detected machine topology
978 if (equivalent_type != KMP_HW_UNKNOWN) {
979 __kmp_hw_subset->at(i).type = equivalent_type;
980 } else {
981 KMP_AFF_WARNING(AffHWSubsetNotExistGeneric,
982 __kmp_hw_get_catalog_string(type));
983 return false;
984 }
985
986 // Check to see if current layer has already been
987 // specified either directly or through an equivalent type
988 if (specified[equivalent_type] != KMP_HW_UNKNOWN) {
989 KMP_AFF_WARNING(AffHWSubsetEqvLayers, __kmp_hw_get_catalog_string(type),
990 __kmp_hw_get_catalog_string(specified[equivalent_type]));
991 return false;
992 }
993 specified[equivalent_type] = type;
994
995 // Check to see if each layer's num & offset parameters are valid
996 max_count = get_ratio(level);
997 if (max_count < 0 ||
998 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) {
999 bool plural = (num > 1);
1000 KMP_AFF_WARNING(AffHWSubsetManyGeneric,
1001 __kmp_hw_get_catalog_string(type, plural));
1002 return false;
1003 }
1004
1005 // Check to see if core attributes are consistent
1006 if (core_level == level) {
1007 // Determine which core attributes are specified
1008 for (int j = 0; j < item.num_attrs; ++j) {
1009 if (item.attr[j].is_core_type_valid())
1010 using_core_types = true;
1011 if (item.attr[j].is_core_eff_valid())
1012 using_core_effs = true;
1013 }
1014
1015 // Check if using a single core attribute on non-hybrid arch.
1016 // Do not ignore all of KMP_HW_SUBSET, just ignore the attribute.
1017 //
1018 // Check if using multiple core attributes on non-hyrbid arch.
1019 // Ignore all of KMP_HW_SUBSET if this is the case.
1020 if ((using_core_effs || using_core_types) && !__kmp_is_hybrid_cpu()) {
1021 if (item.num_attrs == 1) {
1022 if (using_core_effs) {
1023 KMP_AFF_WARNING(AffHWSubsetIgnoringAttr, "efficiency");
1024 } else {
1025 KMP_AFF_WARNING(AffHWSubsetIgnoringAttr, "core_type");
1026 }
1027 using_core_effs = false;
1028 using_core_types = false;
1029 } else {
1030 KMP_AFF_WARNING(AffHWSubsetAttrsNonHybrid);
1031 return false;
1032 }
1033 }
1034
1035 // Check if using both core types and core efficiencies together
1036 if (using_core_types && using_core_effs) {
1037 KMP_AFF_WARNING(AffHWSubsetIncompat, "core_type", "efficiency");
1038 return false;
1039 }
1040
1041 // Check that core efficiency values are valid
1042 if (using_core_effs) {
1043 for (int j = 0; j < item.num_attrs; ++j) {
1044 if (item.attr[j].is_core_eff_valid()) {
1045 int core_eff = item.attr[j].get_core_eff();
1046 if (core_eff < 0 || core_eff >= num_core_efficiencies) {
1047 kmp_str_buf_t buf;
1048 __kmp_str_buf_init(&buf);
1049 __kmp_str_buf_print(&buf, "%d", item.attr[j].get_core_eff());
1050 __kmp_msg(kmp_ms_warning,
1051 KMP_MSG(AffHWSubsetAttrInvalid, "efficiency", buf.str),
1052 KMP_HNT(ValidValuesRange, 0, num_core_efficiencies - 1),
1053 __kmp_msg_null);
1054 __kmp_str_buf_free(&buf);
1055 return false;
1056 }
1057 }
1058 }
1059 }
1060
1061 // Check that the number of requested cores with attributes is valid
1062 if (using_core_types || using_core_effs) {
1063 for (int j = 0; j < item.num_attrs; ++j) {
1064 int num = item.num[j];
1065 int offset = item.offset[j];
1066 int level_above = core_level - 1;
1067 if (level_above >= 0) {
1068 max_count = get_ncores_with_attr_per(item.attr[j], level_above);
1069 if (max_count <= 0 ||
1070 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) {
1071 kmp_str_buf_t buf;
1072 __kmp_hw_get_catalog_core_string(item.attr[j], &buf, num > 0);
1073 KMP_AFF_WARNING(AffHWSubsetManyGeneric, buf.str);
1074 __kmp_str_buf_free(&buf);
1075 return false;
1076 }
1077 }
1078 }
1079 }
1080
1081 if ((using_core_types || using_core_effs) && item.num_attrs > 1) {
1082 for (int j = 0; j < item.num_attrs; ++j) {
1083 // Ambiguous use of specific core attribute + generic core
1084 // e.g., 4c & 3c:intel_core or 4c & 3c:eff1
1085 if (!item.attr[j]) {
1086 kmp_hw_attr_t other_attr;
1087 for (int k = 0; k < item.num_attrs; ++k) {
1088 if (item.attr[k] != item.attr[j]) {
1089 other_attr = item.attr[k];
1090 break;
1091 }
1092 }
1093 kmp_str_buf_t buf;
1094 __kmp_hw_get_catalog_core_string(other_attr, &buf, item.num[j] > 0);
1095 KMP_AFF_WARNING(AffHWSubsetIncompat,
1096 __kmp_hw_get_catalog_string(KMP_HW_CORE), buf.str);
1097 __kmp_str_buf_free(&buf);
1098 return false;
1099 }
1100 // Allow specifying a specific core type or core eff exactly once
1101 for (int k = 0; k < j; ++k) {
1102 if (!item.attr[j] || !item.attr[k])
1103 continue;
1104 if (item.attr[k] == item.attr[j]) {
1105 kmp_str_buf_t buf;
1106 __kmp_hw_get_catalog_core_string(item.attr[j], &buf,
1107 item.num[j] > 0);
1108 KMP_AFF_WARNING(AffHWSubsetAttrRepeat, buf.str);
1109 __kmp_str_buf_free(&buf);
1110 return false;
1111 }
1112 }
1113 }
1114 }
1115 }
1116 }
1117
1118 struct core_type_indexer {
1119 int operator()(const kmp_hw_thread_t &t) const {
1120 switch (t.attrs.get_core_type()) {
1121#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1122 case KMP_HW_CORE_TYPE_ATOM:
1123 return 1;
1124 case KMP_HW_CORE_TYPE_CORE:
1125 return 2;
1126#endif
1127 case KMP_HW_CORE_TYPE_UNKNOWN:
1128 return 0;
1129 }
1130 KMP_ASSERT(0);
1131 return 0;
1132 }
1133 };
1134 struct core_eff_indexer {
1135 int operator()(const kmp_hw_thread_t &t) const {
1136 return t.attrs.get_core_eff();
1137 }
1138 };
1139
1140 kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_TYPES, core_type_indexer> core_type_sub_ids(
1141 core_level);
1142 kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_EFFS, core_eff_indexer> core_eff_sub_ids(
1143 core_level);
1144
1145 // Determine which hardware threads should be filtered.
1146 int num_filtered = 0;
1147 bool *filtered = (bool *)__kmp_allocate(sizeof(bool) * num_hw_threads);
1148 for (int i = 0; i < num_hw_threads; ++i) {
1149 kmp_hw_thread_t &hw_thread = hw_threads[i];
1150 // Update type_sub_id
1151 if (using_core_types)
1152 core_type_sub_ids.update(hw_thread);
1153 if (using_core_effs)
1154 core_eff_sub_ids.update(hw_thread);
1155
1156 // Check to see if this hardware thread should be filtered
1157 bool should_be_filtered = false;
1158 for (int hw_subset_index = 0; hw_subset_index < hw_subset_depth;
1159 ++hw_subset_index) {
1160 const auto &hw_subset_item = __kmp_hw_subset->at(hw_subset_index);
1161 int level = topology_levels[hw_subset_index];
1162 if (level == -1)
1163 continue;
1164 if ((using_core_effs || using_core_types) && level == core_level) {
1165 // Look for the core attribute in KMP_HW_SUBSET which corresponds
1166 // to this hardware thread's core attribute. Use this num,offset plus
1167 // the running sub_id for the particular core attribute of this hardware
1168 // thread to determine if the hardware thread should be filtered or not.
1169 int attr_idx;
1170 kmp_hw_core_type_t core_type = hw_thread.attrs.get_core_type();
1171 int core_eff = hw_thread.attrs.get_core_eff();
1172 for (attr_idx = 0; attr_idx < hw_subset_item.num_attrs; ++attr_idx) {
1173 if (using_core_types &&
1174 hw_subset_item.attr[attr_idx].get_core_type() == core_type)
1175 break;
1176 if (using_core_effs &&
1177 hw_subset_item.attr[attr_idx].get_core_eff() == core_eff)
1178 break;
1179 }
1180 // This core attribute isn't in the KMP_HW_SUBSET so always filter it.
1181 if (attr_idx == hw_subset_item.num_attrs) {
1182 should_be_filtered = true;
1183 break;
1184 }
1185 int sub_id;
1186 int num = hw_subset_item.num[attr_idx];
1187 int offset = hw_subset_item.offset[attr_idx];
1188 if (using_core_types)
1189 sub_id = core_type_sub_ids.get_sub_id(hw_thread);
1190 else
1191 sub_id = core_eff_sub_ids.get_sub_id(hw_thread);
1192 if (sub_id < offset ||
1193 (num != kmp_hw_subset_t::USE_ALL && sub_id >= offset + num)) {
1194 should_be_filtered = true;
1195 break;
1196 }
1197 } else {
1198 int num = hw_subset_item.num[0];
1199 int offset = hw_subset_item.offset[0];
1200 if (hw_thread.sub_ids[level] < offset ||
1201 (num != kmp_hw_subset_t::USE_ALL &&
1202 hw_thread.sub_ids[level] >= offset + num)) {
1203 should_be_filtered = true;
1204 break;
1205 }
1206 }
1207 }
1208 // Collect filtering information
1209 filtered[i] = should_be_filtered;
1210 if (should_be_filtered)
1211 num_filtered++;
1212 }
1213
1214 // One last check that we shouldn't allow filtering entire machine
1215 if (num_filtered == num_hw_threads) {
1216 KMP_AFF_WARNING(AffHWSubsetAllFiltered);
1217 __kmp_free(filtered);
1218 return false;
1219 }
1220
1221 // Apply the filter
1222 int new_index = 0;
1223 for (int i = 0; i < num_hw_threads; ++i) {
1224 if (!filtered[i]) {
1225 if (i != new_index)
1226 hw_threads[new_index] = hw_threads[i];
1227 new_index++;
1228 } else {
1229#if KMP_AFFINITY_SUPPORTED
1230 KMP_CPU_CLR(hw_threads[i].os_id, __kmp_affin_fullMask);
1231#endif
1232 __kmp_avail_proc--;
1233 }
1234 }
1235
1236 KMP_DEBUG_ASSERT(new_index <= num_hw_threads);
1237 num_hw_threads = new_index;
1238
1239 // Post hardware subset canonicalization
1240 _gather_enumeration_information();
1241 _discover_uniformity();
1242 _set_globals();
1243 _set_last_level_cache();
1244 __kmp_free(filtered);
1245 return true;
1246}
1247
1248bool kmp_topology_t::is_close(int hwt1, int hwt2, int hw_level) const {
1249 if (hw_level >= depth)
1250 return true;
1251 bool retval = true;
1252 const kmp_hw_thread_t &t1 = hw_threads[hwt1];
1253 const kmp_hw_thread_t &t2 = hw_threads[hwt2];
1254 for (int i = 0; i < (depth - hw_level); ++i) {
1255 if (t1.ids[i] != t2.ids[i])
1256 return false;
1257 }
1258 return retval;
1259}
1260
1262
1263#if KMP_AFFINITY_SUPPORTED
1264class kmp_affinity_raii_t {
1265 kmp_affin_mask_t *mask;
1266 bool restored;
1267
1268public:
1269 kmp_affinity_raii_t() : restored(false) {
1270 KMP_CPU_ALLOC(mask);
1271 KMP_ASSERT(mask != NULL);
1272 __kmp_get_system_affinity(mask, TRUE);
1273 }
1274 void restore() {
1275 __kmp_set_system_affinity(mask, TRUE);
1276 KMP_CPU_FREE(mask);
1277 restored = true;
1278 }
1279 ~kmp_affinity_raii_t() {
1280 if (!restored) {
1281 __kmp_set_system_affinity(mask, TRUE);
1282 KMP_CPU_FREE(mask);
1283 }
1284 }
1285};
1286
1287bool KMPAffinity::picked_api = false;
1288
1289void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); }
1290void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); }
1291void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); }
1292void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); }
1293void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); }
1294void KMPAffinity::operator delete(void *p) { __kmp_free(p); }
1295
1296void KMPAffinity::pick_api() {
1297 KMPAffinity *affinity_dispatch;
1298 if (picked_api)
1299 return;
1300#if KMP_USE_HWLOC
1301 // Only use Hwloc if affinity isn't explicitly disabled and
1302 // user requests Hwloc topology method
1303 if (__kmp_affinity_top_method == affinity_top_method_hwloc &&
1304 __kmp_affinity_type != affinity_disabled) {
1305 affinity_dispatch = new KMPHwlocAffinity();
1306 } else
1307#endif
1308 {
1309 affinity_dispatch = new KMPNativeAffinity();
1310 }
1311 __kmp_affinity_dispatch = affinity_dispatch;
1312 picked_api = true;
1313}
1314
1315void KMPAffinity::destroy_api() {
1316 if (__kmp_affinity_dispatch != NULL) {
1317 delete __kmp_affinity_dispatch;
1318 __kmp_affinity_dispatch = NULL;
1319 picked_api = false;
1320 }
1321}
1322
1323#define KMP_ADVANCE_SCAN(scan) \
1324 while (*scan != '\0') { \
1325 scan++; \
1326 }
1327
1328// Print the affinity mask to the character array in a pretty format.
1329// The format is a comma separated list of non-negative integers or integer
1330// ranges: e.g., 1,2,3-5,7,9-15
1331// The format can also be the string "{<empty>}" if no bits are set in mask
1332char *__kmp_affinity_print_mask(char *buf, int buf_len,
1333 kmp_affin_mask_t *mask) {
1334 int start = 0, finish = 0, previous = 0;
1335 bool first_range;
1336 KMP_ASSERT(buf);
1337 KMP_ASSERT(buf_len >= 40);
1338 KMP_ASSERT(mask);
1339 char *scan = buf;
1340 char *end = buf + buf_len - 1;
1341
1342 // Check for empty set.
1343 if (mask->begin() == mask->end()) {
1344 KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}");
1345 KMP_ADVANCE_SCAN(scan);
1346 KMP_ASSERT(scan <= end);
1347 return buf;
1348 }
1349
1350 first_range = true;
1351 start = mask->begin();
1352 while (1) {
1353 // Find next range
1354 // [start, previous] is inclusive range of contiguous bits in mask
1355 for (finish = mask->next(start), previous = start;
1356 finish == previous + 1 && finish != mask->end();
1357 finish = mask->next(finish)) {
1358 previous = finish;
1359 }
1360
1361 // The first range does not need a comma printed before it, but the rest
1362 // of the ranges do need a comma beforehand
1363 if (!first_range) {
1364 KMP_SNPRINTF(scan, end - scan + 1, "%s", ",");
1365 KMP_ADVANCE_SCAN(scan);
1366 } else {
1367 first_range = false;
1368 }
1369 // Range with three or more contiguous bits in the affinity mask
1370 if (previous - start > 1) {
1371 KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous);
1372 } else {
1373 // Range with one or two contiguous bits in the affinity mask
1374 KMP_SNPRINTF(scan, end - scan + 1, "%u", start);
1375 KMP_ADVANCE_SCAN(scan);
1376 if (previous - start > 0) {
1377 KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous);
1378 }
1379 }
1380 KMP_ADVANCE_SCAN(scan);
1381 // Start over with new start point
1382 start = finish;
1383 if (start == mask->end())
1384 break;
1385 // Check for overflow
1386 if (end - scan < 2)
1387 break;
1388 }
1389
1390 // Check for overflow
1391 KMP_ASSERT(scan <= end);
1392 return buf;
1393}
1394#undef KMP_ADVANCE_SCAN
1395
1396// Print the affinity mask to the string buffer object in a pretty format
1397// The format is a comma separated list of non-negative integers or integer
1398// ranges: e.g., 1,2,3-5,7,9-15
1399// The format can also be the string "{<empty>}" if no bits are set in mask
1400kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
1401 kmp_affin_mask_t *mask) {
1402 int start = 0, finish = 0, previous = 0;
1403 bool first_range;
1404 KMP_ASSERT(buf);
1405 KMP_ASSERT(mask);
1406
1407 __kmp_str_buf_clear(buf);
1408
1409 // Check for empty set.
1410 if (mask->begin() == mask->end()) {
1411 __kmp_str_buf_print(buf, "%s", "{<empty>}");
1412 return buf;
1413 }
1414
1415 first_range = true;
1416 start = mask->begin();
1417 while (1) {
1418 // Find next range
1419 // [start, previous] is inclusive range of contiguous bits in mask
1420 for (finish = mask->next(start), previous = start;
1421 finish == previous + 1 && finish != mask->end();
1422 finish = mask->next(finish)) {
1423 previous = finish;
1424 }
1425
1426 // The first range does not need a comma printed before it, but the rest
1427 // of the ranges do need a comma beforehand
1428 if (!first_range) {
1429 __kmp_str_buf_print(buf, "%s", ",");
1430 } else {
1431 first_range = false;
1432 }
1433 // Range with three or more contiguous bits in the affinity mask
1434 if (previous - start > 1) {
1435 __kmp_str_buf_print(buf, "%u-%u", start, previous);
1436 } else {
1437 // Range with one or two contiguous bits in the affinity mask
1438 __kmp_str_buf_print(buf, "%u", start);
1439 if (previous - start > 0) {
1440 __kmp_str_buf_print(buf, ",%u", previous);
1441 }
1442 }
1443 // Start over with new start point
1444 start = finish;
1445 if (start == mask->end())
1446 break;
1447 }
1448 return buf;
1449}
1450
1451// Return (possibly empty) affinity mask representing the offline CPUs
1452// Caller must free the mask
1453kmp_affin_mask_t *__kmp_affinity_get_offline_cpus() {
1454 kmp_affin_mask_t *offline;
1455 KMP_CPU_ALLOC(offline);
1456 KMP_CPU_ZERO(offline);
1457#if KMP_OS_LINUX
1458 int n, begin_cpu, end_cpu;
1459 kmp_safe_raii_file_t offline_file;
1460 auto skip_ws = [](FILE *f) {
1461 int c;
1462 do {
1463 c = fgetc(f);
1464 } while (isspace(c));
1465 if (c != EOF)
1466 ungetc(c, f);
1467 };
1468 // File contains CSV of integer ranges representing the offline CPUs
1469 // e.g., 1,2,4-7,9,11-15
1470 int status = offline_file.try_open("/sys/devices/system/cpu/offline", "r");
1471 if (status != 0)
1472 return offline;
1473 while (!feof(offline_file)) {
1474 skip_ws(offline_file);
1475 n = fscanf(offline_file, "%d", &begin_cpu);
1476 if (n != 1)
1477 break;
1478 skip_ws(offline_file);
1479 int c = fgetc(offline_file);
1480 if (c == EOF || c == ',') {
1481 // Just single CPU
1482 end_cpu = begin_cpu;
1483 } else if (c == '-') {
1484 // Range of CPUs
1485 skip_ws(offline_file);
1486 n = fscanf(offline_file, "%d", &end_cpu);
1487 if (n != 1)
1488 break;
1489 skip_ws(offline_file);
1490 c = fgetc(offline_file); // skip ','
1491 } else {
1492 // Syntax problem
1493 break;
1494 }
1495 // Ensure a valid range of CPUs
1496 if (begin_cpu < 0 || begin_cpu >= __kmp_xproc || end_cpu < 0 ||
1497 end_cpu >= __kmp_xproc || begin_cpu > end_cpu) {
1498 continue;
1499 }
1500 // Insert [begin_cpu, end_cpu] into offline mask
1501 for (int cpu = begin_cpu; cpu <= end_cpu; ++cpu) {
1502 KMP_CPU_SET(cpu, offline);
1503 }
1504 }
1505#endif
1506 return offline;
1507}
1508
1509// Return the number of available procs
1510int __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) {
1511 int avail_proc = 0;
1512 KMP_CPU_ZERO(mask);
1513
1514#if KMP_GROUP_AFFINITY
1515
1516 if (__kmp_num_proc_groups > 1) {
1517 int group;
1518 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
1519 for (group = 0; group < __kmp_num_proc_groups; group++) {
1520 int i;
1521 int num = __kmp_GetActiveProcessorCount(group);
1522 for (i = 0; i < num; i++) {
1523 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
1524 avail_proc++;
1525 }
1526 }
1527 } else
1528
1529#endif /* KMP_GROUP_AFFINITY */
1530
1531 {
1532 int proc;
1533 kmp_affin_mask_t *offline_cpus = __kmp_affinity_get_offline_cpus();
1534 for (proc = 0; proc < __kmp_xproc; proc++) {
1535 // Skip offline CPUs
1536 if (KMP_CPU_ISSET(proc, offline_cpus))
1537 continue;
1538 KMP_CPU_SET(proc, mask);
1539 avail_proc++;
1540 }
1541 KMP_CPU_FREE(offline_cpus);
1542 }
1543
1544 return avail_proc;
1545}
1546
1547// All of the __kmp_affinity_create_*_map() routines should allocate the
1548// internal topology object and set the layer ids for it. Each routine
1549// returns a boolean on whether it was successful at doing so.
1550kmp_affin_mask_t *__kmp_affin_fullMask = NULL;
1551// Original mask is a subset of full mask in multiple processor groups topology
1552kmp_affin_mask_t *__kmp_affin_origMask = NULL;
1553
1554#if KMP_USE_HWLOC
1555static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) {
1556#if HWLOC_API_VERSION >= 0x00020000
1557 return hwloc_obj_type_is_cache(obj->type);
1558#else
1559 return obj->type == HWLOC_OBJ_CACHE;
1560#endif
1561}
1562
1563// Returns KMP_HW_* type derived from HWLOC_* type
1564static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) {
1565
1566 if (__kmp_hwloc_is_cache_type(obj)) {
1567 if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION)
1568 return KMP_HW_UNKNOWN;
1569 switch (obj->attr->cache.depth) {
1570 case 1:
1571 return KMP_HW_L1;
1572 case 2:
1573#if KMP_MIC_SUPPORTED
1574 if (__kmp_mic_type == mic3) {
1575 return KMP_HW_TILE;
1576 }
1577#endif
1578 return KMP_HW_L2;
1579 case 3:
1580 return KMP_HW_L3;
1581 }
1582 return KMP_HW_UNKNOWN;
1583 }
1584
1585 switch (obj->type) {
1586 case HWLOC_OBJ_PACKAGE:
1587 return KMP_HW_SOCKET;
1588 case HWLOC_OBJ_NUMANODE:
1589 return KMP_HW_NUMA;
1590 case HWLOC_OBJ_CORE:
1591 return KMP_HW_CORE;
1592 case HWLOC_OBJ_PU:
1593 return KMP_HW_THREAD;
1594 case HWLOC_OBJ_GROUP:
1595 if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE)
1596 return KMP_HW_DIE;
1597 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE)
1598 return KMP_HW_TILE;
1599 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE)
1600 return KMP_HW_MODULE;
1601 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP)
1602 return KMP_HW_PROC_GROUP;
1603 return KMP_HW_UNKNOWN;
1604#if HWLOC_API_VERSION >= 0x00020100
1605 case HWLOC_OBJ_DIE:
1606 return KMP_HW_DIE;
1607#endif
1608 }
1609 return KMP_HW_UNKNOWN;
1610}
1611
1612// Returns the number of objects of type 'type' below 'obj' within the topology
1613// tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is
1614// HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET
1615// object.
1616static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,
1617 hwloc_obj_type_t type) {
1618 int retval = 0;
1619 hwloc_obj_t first;
1620 for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type,
1621 obj->logical_index, type, 0);
1622 first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology,
1623 obj->type, first) == obj;
1624 first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type,
1625 first)) {
1626 ++retval;
1627 }
1628 return retval;
1629}
1630
1631// This gets the sub_id for a lower object under a higher object in the
1632// topology tree
1633static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher,
1634 hwloc_obj_t lower) {
1635 hwloc_obj_t obj;
1636 hwloc_obj_type_t ltype = lower->type;
1637 int lindex = lower->logical_index - 1;
1638 int sub_id = 0;
1639 // Get the previous lower object
1640 obj = hwloc_get_obj_by_type(t, ltype, lindex);
1641 while (obj && lindex >= 0 &&
1642 hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) {
1643 if (obj->userdata) {
1644 sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata));
1645 break;
1646 }
1647 sub_id++;
1648 lindex--;
1649 obj = hwloc_get_obj_by_type(t, ltype, lindex);
1650 }
1651 // store sub_id + 1 so that 0 is differed from NULL
1652 lower->userdata = RCAST(void *, sub_id + 1);
1653 return sub_id;
1654}
1655
1656static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) {
1657 kmp_hw_t type;
1658 int hw_thread_index, sub_id;
1659 int depth;
1660 hwloc_obj_t pu, obj, root, prev;
1661 kmp_hw_t types[KMP_HW_LAST];
1662 hwloc_obj_type_t hwloc_types[KMP_HW_LAST];
1663
1664 hwloc_topology_t tp = __kmp_hwloc_topology;
1665 *msg_id = kmp_i18n_null;
1666 if (__kmp_affinity_verbose) {
1667 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
1668 }
1669
1670 if (!KMP_AFFINITY_CAPABLE()) {
1671 // Hack to try and infer the machine topology using only the data
1672 // available from hwloc on the current thread, and __kmp_xproc.
1673 KMP_ASSERT(__kmp_affinity_type == affinity_none);
1674 // hwloc only guarantees existance of PU object, so check PACKAGE and CORE
1675 hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0);
1676 if (o != NULL)
1677 nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE);
1678 else
1679 nCoresPerPkg = 1; // no PACKAGE found
1680 o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0);
1681 if (o != NULL)
1682 __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU);
1683 else
1684 __kmp_nThreadsPerCore = 1; // no CORE found
1685 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
1686 if (nCoresPerPkg == 0)
1687 nCoresPerPkg = 1; // to prevent possible division by 0
1688 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1689 return true;
1690 }
1691
1692 // Handle multiple types of cores if they exist on the system
1693 int nr_cpu_kinds = hwloc_cpukinds_get_nr(tp, 0);
1694
1695 typedef struct kmp_hwloc_cpukinds_info_t {
1696 int efficiency;
1697 kmp_hw_core_type_t core_type;
1698 hwloc_bitmap_t mask;
1699 } kmp_hwloc_cpukinds_info_t;
1700 kmp_hwloc_cpukinds_info_t *cpukinds = nullptr;
1701
1702 if (nr_cpu_kinds > 0) {
1703 unsigned nr_infos;
1704 struct hwloc_info_s *infos;
1705 cpukinds = (kmp_hwloc_cpukinds_info_t *)__kmp_allocate(
1706 sizeof(kmp_hwloc_cpukinds_info_t) * nr_cpu_kinds);
1707 for (unsigned idx = 0; idx < (unsigned)nr_cpu_kinds; ++idx) {
1708 cpukinds[idx].efficiency = -1;
1709 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_UNKNOWN;
1710 cpukinds[idx].mask = hwloc_bitmap_alloc();
1711 if (hwloc_cpukinds_get_info(tp, idx, cpukinds[idx].mask,
1712 &cpukinds[idx].efficiency, &nr_infos, &infos,
1713 0) == 0) {
1714 for (unsigned i = 0; i < nr_infos; ++i) {
1715 if (__kmp_str_match("CoreType", 8, infos[i].name)) {
1716#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1717 if (__kmp_str_match("IntelAtom", 9, infos[i].value)) {
1718 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_ATOM;
1719 break;
1720 } else if (__kmp_str_match("IntelCore", 9, infos[i].value)) {
1721 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_CORE;
1722 break;
1723 }
1724#endif
1725 }
1726 }
1727 }
1728 }
1729 }
1730
1731 root = hwloc_get_root_obj(tp);
1732
1733 // Figure out the depth and types in the topology
1734 depth = 0;
1735 pu = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin());
1736 KMP_ASSERT(pu);
1737 obj = pu;
1738 types[depth] = KMP_HW_THREAD;
1739 hwloc_types[depth] = obj->type;
1740 depth++;
1741 while (obj != root && obj != NULL) {
1742 obj = obj->parent;
1743#if HWLOC_API_VERSION >= 0x00020000
1744 if (obj->memory_arity) {
1745 hwloc_obj_t memory;
1746 for (memory = obj->memory_first_child; memory;
1747 memory = hwloc_get_next_child(tp, obj, memory)) {
1748 if (memory->type == HWLOC_OBJ_NUMANODE)
1749 break;
1750 }
1751 if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
1752 types[depth] = KMP_HW_NUMA;
1753 hwloc_types[depth] = memory->type;
1754 depth++;
1755 }
1756 }
1757#endif
1758 type = __kmp_hwloc_type_2_topology_type(obj);
1759 if (type != KMP_HW_UNKNOWN) {
1760 types[depth] = type;
1761 hwloc_types[depth] = obj->type;
1762 depth++;
1763 }
1764 }
1765 KMP_ASSERT(depth > 0);
1766
1767 // Get the order for the types correct
1768 for (int i = 0, j = depth - 1; i < j; ++i, --j) {
1769 hwloc_obj_type_t hwloc_temp = hwloc_types[i];
1770 kmp_hw_t temp = types[i];
1771 types[i] = types[j];
1772 types[j] = temp;
1773 hwloc_types[i] = hwloc_types[j];
1774 hwloc_types[j] = hwloc_temp;
1775 }
1776
1777 // Allocate the data structure to be returned.
1778 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
1779
1780 hw_thread_index = 0;
1781 pu = NULL;
1782 while ((pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu))) {
1783 int index = depth - 1;
1784 bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask);
1785 kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
1786 if (included) {
1787 hw_thread.clear();
1788 hw_thread.ids[index] = pu->logical_index;
1789 hw_thread.os_id = pu->os_index;
1790 // If multiple core types, then set that attribute for the hardware thread
1791 if (cpukinds) {
1792 int cpukind_index = -1;
1793 for (int i = 0; i < nr_cpu_kinds; ++i) {
1794 if (hwloc_bitmap_isset(cpukinds[i].mask, hw_thread.os_id)) {
1795 cpukind_index = i;
1796 break;
1797 }
1798 }
1799 if (cpukind_index >= 0) {
1800 hw_thread.attrs.set_core_type(cpukinds[cpukind_index].core_type);
1801 hw_thread.attrs.set_core_eff(cpukinds[cpukind_index].efficiency);
1802 }
1803 }
1804 index--;
1805 }
1806 obj = pu;
1807 prev = obj;
1808 while (obj != root && obj != NULL) {
1809 obj = obj->parent;
1810#if HWLOC_API_VERSION >= 0x00020000
1811 // NUMA Nodes are handled differently since they are not within the
1812 // parent/child structure anymore. They are separate children
1813 // of obj (memory_first_child points to first memory child)
1814 if (obj->memory_arity) {
1815 hwloc_obj_t memory;
1816 for (memory = obj->memory_first_child; memory;
1817 memory = hwloc_get_next_child(tp, obj, memory)) {
1818 if (memory->type == HWLOC_OBJ_NUMANODE)
1819 break;
1820 }
1821 if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
1822 sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev);
1823 if (included) {
1824 hw_thread.ids[index] = memory->logical_index;
1825 hw_thread.ids[index + 1] = sub_id;
1826 index--;
1827 }
1828 prev = memory;
1829 }
1830 prev = obj;
1831 }
1832#endif
1833 type = __kmp_hwloc_type_2_topology_type(obj);
1834 if (type != KMP_HW_UNKNOWN) {
1835 sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev);
1836 if (included) {
1837 hw_thread.ids[index] = obj->logical_index;
1838 hw_thread.ids[index + 1] = sub_id;
1839 index--;
1840 }
1841 prev = obj;
1842 }
1843 }
1844 if (included)
1845 hw_thread_index++;
1846 }
1847
1848 // Free the core types information
1849 if (cpukinds) {
1850 for (int idx = 0; idx < nr_cpu_kinds; ++idx)
1851 hwloc_bitmap_free(cpukinds[idx].mask);
1852 __kmp_free(cpukinds);
1853 }
1854 __kmp_topology->sort_ids();
1855 return true;
1856}
1857#endif // KMP_USE_HWLOC
1858
1859// If we don't know how to retrieve the machine's processor topology, or
1860// encounter an error in doing so, this routine is called to form a "flat"
1861// mapping of os thread id's <-> processor id's.
1862static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) {
1863 *msg_id = kmp_i18n_null;
1864 int depth = 3;
1865 kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD};
1866
1867 if (__kmp_affinity_verbose) {
1868 KMP_INFORM(UsingFlatOS, "KMP_AFFINITY");
1869 }
1870
1871 // Even if __kmp_affinity_type == affinity_none, this routine might still
1872 // called to set __kmp_ncores, as well as
1873 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1874 if (!KMP_AFFINITY_CAPABLE()) {
1875 KMP_ASSERT(__kmp_affinity_type == affinity_none);
1876 __kmp_ncores = nPackages = __kmp_xproc;
1877 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1878 return true;
1879 }
1880
1881 // When affinity is off, this routine will still be called to set
1882 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1883 // Make sure all these vars are set correctly, and return now if affinity is
1884 // not enabled.
1885 __kmp_ncores = nPackages = __kmp_avail_proc;
1886 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1887
1888 // Construct the data structure to be returned.
1889 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
1890 int avail_ct = 0;
1891 int i;
1892 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
1893 // Skip this proc if it is not included in the machine model.
1894 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
1895 continue;
1896 }
1897 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct);
1898 hw_thread.clear();
1899 hw_thread.os_id = i;
1900 hw_thread.ids[0] = i;
1901 hw_thread.ids[1] = 0;
1902 hw_thread.ids[2] = 0;
1903 avail_ct++;
1904 }
1905 if (__kmp_affinity_verbose) {
1906 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
1907 }
1908 return true;
1909}
1910
1911#if KMP_GROUP_AFFINITY
1912// If multiple Windows* OS processor groups exist, we can create a 2-level
1913// topology map with the groups at level 0 and the individual procs at level 1.
1914// This facilitates letting the threads float among all procs in a group,
1915// if granularity=group (the default when there are multiple groups).
1916static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) {
1917 *msg_id = kmp_i18n_null;
1918 int depth = 3;
1919 kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD};
1920 const static size_t BITS_PER_GROUP = CHAR_BIT * sizeof(DWORD_PTR);
1921
1922 if (__kmp_affinity_verbose) {
1923 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
1924 }
1925
1926 // If we aren't affinity capable, then use flat topology
1927 if (!KMP_AFFINITY_CAPABLE()) {
1928 KMP_ASSERT(__kmp_affinity_type == affinity_none);
1929 nPackages = __kmp_num_proc_groups;
1930 __kmp_nThreadsPerCore = 1;
1931 __kmp_ncores = __kmp_xproc;
1932 nCoresPerPkg = nPackages / __kmp_ncores;
1933 return true;
1934 }
1935
1936 // Construct the data structure to be returned.
1937 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
1938 int avail_ct = 0;
1939 int i;
1940 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
1941 // Skip this proc if it is not included in the machine model.
1942 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
1943 continue;
1944 }
1945 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct++);
1946 hw_thread.clear();
1947 hw_thread.os_id = i;
1948 hw_thread.ids[0] = i / BITS_PER_GROUP;
1949 hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP;
1950 }
1951 return true;
1952}
1953#endif /* KMP_GROUP_AFFINITY */
1954
1955#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1956
1957template <kmp_uint32 LSB, kmp_uint32 MSB>
1958static inline unsigned __kmp_extract_bits(kmp_uint32 v) {
1959 const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB;
1960 const kmp_uint32 SHIFT_RIGHT = LSB;
1961 kmp_uint32 retval = v;
1962 retval <<= SHIFT_LEFT;
1963 retval >>= (SHIFT_LEFT + SHIFT_RIGHT);
1964 return retval;
1965}
1966
1967static int __kmp_cpuid_mask_width(int count) {
1968 int r = 0;
1969
1970 while ((1 << r) < count)
1971 ++r;
1972 return r;
1973}
1974
1975class apicThreadInfo {
1976public:
1977 unsigned osId; // param to __kmp_affinity_bind_thread
1978 unsigned apicId; // from cpuid after binding
1979 unsigned maxCoresPerPkg; // ""
1980 unsigned maxThreadsPerPkg; // ""
1981 unsigned pkgId; // inferred from above values
1982 unsigned coreId; // ""
1983 unsigned threadId; // ""
1984};
1985
1986static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a,
1987 const void *b) {
1988 const apicThreadInfo *aa = (const apicThreadInfo *)a;
1989 const apicThreadInfo *bb = (const apicThreadInfo *)b;
1990 if (aa->pkgId < bb->pkgId)
1991 return -1;
1992 if (aa->pkgId > bb->pkgId)
1993 return 1;
1994 if (aa->coreId < bb->coreId)
1995 return -1;
1996 if (aa->coreId > bb->coreId)
1997 return 1;
1998 if (aa->threadId < bb->threadId)
1999 return -1;
2000 if (aa->threadId > bb->threadId)
2001 return 1;
2002 return 0;
2003}
2004
2005class kmp_cache_info_t {
2006public:
2007 struct info_t {
2008 unsigned level, mask;
2009 };
2010 kmp_cache_info_t() : depth(0) { get_leaf4_levels(); }
2011 size_t get_depth() const { return depth; }
2012 info_t &operator[](size_t index) { return table[index]; }
2013 const info_t &operator[](size_t index) const { return table[index]; }
2014
2015 static kmp_hw_t get_topology_type(unsigned level) {
2016 KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL);
2017 switch (level) {
2018 case 1:
2019 return KMP_HW_L1;
2020 case 2:
2021 return KMP_HW_L2;
2022 case 3:
2023 return KMP_HW_L3;
2024 }
2025 return KMP_HW_UNKNOWN;
2026 }
2027
2028private:
2029 static const int MAX_CACHE_LEVEL = 3;
2030
2031 size_t depth;
2032 info_t table[MAX_CACHE_LEVEL];
2033
2034 void get_leaf4_levels() {
2035 unsigned level = 0;
2036 while (depth < MAX_CACHE_LEVEL) {
2037 unsigned cache_type, max_threads_sharing;
2038 unsigned cache_level, cache_mask_width;
2039 kmp_cpuid buf2;
2040 __kmp_x86_cpuid(4, level, &buf2);
2041 cache_type = __kmp_extract_bits<0, 4>(buf2.eax);
2042 if (!cache_type)
2043 break;
2044 // Skip instruction caches
2045 if (cache_type == 2) {
2046 level++;
2047 continue;
2048 }
2049 max_threads_sharing = __kmp_extract_bits<14, 25>(buf2.eax) + 1;
2050 cache_mask_width = __kmp_cpuid_mask_width(max_threads_sharing);
2051 cache_level = __kmp_extract_bits<5, 7>(buf2.eax);
2052 table[depth].level = cache_level;
2053 table[depth].mask = ((-1) << cache_mask_width);
2054 depth++;
2055 level++;
2056 }
2057 }
2058};
2059
2060// On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
2061// an algorithm which cycles through the available os threads, setting
2062// the current thread's affinity mask to that thread, and then retrieves
2063// the Apic Id for each thread context using the cpuid instruction.
2064static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) {
2065 kmp_cpuid buf;
2066 *msg_id = kmp_i18n_null;
2067
2068 if (__kmp_affinity_verbose) {
2069 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
2070 }
2071
2072 // Check if cpuid leaf 4 is supported.
2073 __kmp_x86_cpuid(0, 0, &buf);
2074 if (buf.eax < 4) {
2075 *msg_id = kmp_i18n_str_NoLeaf4Support;
2076 return false;
2077 }
2078
2079 // The algorithm used starts by setting the affinity to each available thread
2080 // and retrieving info from the cpuid instruction, so if we are not capable of
2081 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
2082 // need to do something else - use the defaults that we calculated from
2083 // issuing cpuid without binding to each proc.
2084 if (!KMP_AFFINITY_CAPABLE()) {
2085 // Hack to try and infer the machine topology using only the data
2086 // available from cpuid on the current thread, and __kmp_xproc.
2087 KMP_ASSERT(__kmp_affinity_type == affinity_none);
2088
2089 // Get an upper bound on the number of threads per package using cpuid(1).
2090 // On some OS/chps combinations where HT is supported by the chip but is
2091 // disabled, this value will be 2 on a single core chip. Usually, it will be
2092 // 2 if HT is enabled and 1 if HT is disabled.
2093 __kmp_x86_cpuid(1, 0, &buf);
2094 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
2095 if (maxThreadsPerPkg == 0) {
2096 maxThreadsPerPkg = 1;
2097 }
2098
2099 // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded
2100 // value.
2101 //
2102 // The author of cpu_count.cpp treated this only an upper bound on the
2103 // number of cores, but I haven't seen any cases where it was greater than
2104 // the actual number of cores, so we will treat it as exact in this block of
2105 // code.
2106 //
2107 // First, we need to check if cpuid(4) is supported on this chip. To see if
2108 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or
2109 // greater.
2110 __kmp_x86_cpuid(0, 0, &buf);
2111 if (buf.eax >= 4) {
2112 __kmp_x86_cpuid(4, 0, &buf);
2113 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
2114 } else {
2115 nCoresPerPkg = 1;
2116 }
2117
2118 // There is no way to reliably tell if HT is enabled without issuing the
2119 // cpuid instruction from every thread, can correlating the cpuid info, so
2120 // if the machine is not affinity capable, we assume that HT is off. We have
2121 // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine
2122 // does not support HT.
2123 //
2124 // - Older OSes are usually found on machines with older chips, which do not
2125 // support HT.
2126 // - The performance penalty for mistakenly identifying a machine as HT when
2127 // it isn't (which results in blocktime being incorrectly set to 0) is
2128 // greater than the penalty when for mistakenly identifying a machine as
2129 // being 1 thread/core when it is really HT enabled (which results in
2130 // blocktime being incorrectly set to a positive value).
2131 __kmp_ncores = __kmp_xproc;
2132 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
2133 __kmp_nThreadsPerCore = 1;
2134 return true;
2135 }
2136
2137 // From here on, we can assume that it is safe to call
2138 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
2139 // __kmp_affinity_type = affinity_none.
2140
2141 // Save the affinity mask for the current thread.
2142 kmp_affinity_raii_t previous_affinity;
2143
2144 // Run through each of the available contexts, binding the current thread
2145 // to it, and obtaining the pertinent information using the cpuid instr.
2146 //
2147 // The relevant information is:
2148 // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
2149 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
2150 // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value
2151 // of this field determines the width of the core# + thread# fields in the
2152 // Apic Id. It is also an upper bound on the number of threads per
2153 // package, but it has been verified that situations happen were it is not
2154 // exact. In particular, on certain OS/chip combinations where Intel(R)
2155 // Hyper-Threading Technology is supported by the chip but has been
2156 // disabled, the value of this field will be 2 (for a single core chip).
2157 // On other OS/chip combinations supporting Intel(R) Hyper-Threading
2158 // Technology, the value of this field will be 1 when Intel(R)
2159 // Hyper-Threading Technology is disabled and 2 when it is enabled.
2160 // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value
2161 // of this field (+1) determines the width of the core# field in the Apic
2162 // Id. The comments in "cpucount.cpp" say that this value is an upper
2163 // bound, but the IA-32 architecture manual says that it is exactly the
2164 // number of cores per package, and I haven't seen any case where it
2165 // wasn't.
2166 //
2167 // From this information, deduce the package Id, core Id, and thread Id,
2168 // and set the corresponding fields in the apicThreadInfo struct.
2169 unsigned i;
2170 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
2171 __kmp_avail_proc * sizeof(apicThreadInfo));
2172 unsigned nApics = 0;
2173 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
2174 // Skip this proc if it is not included in the machine model.
2175 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
2176 continue;
2177 }
2178 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
2179
2180 __kmp_affinity_dispatch->bind_thread(i);
2181 threadInfo[nApics].osId = i;
2182
2183 // The apic id and max threads per pkg come from cpuid(1).
2184 __kmp_x86_cpuid(1, 0, &buf);
2185 if (((buf.edx >> 9) & 1) == 0) {
2186 __kmp_free(threadInfo);
2187 *msg_id = kmp_i18n_str_ApicNotPresent;
2188 return false;
2189 }
2190 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
2191 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
2192 if (threadInfo[nApics].maxThreadsPerPkg == 0) {
2193 threadInfo[nApics].maxThreadsPerPkg = 1;
2194 }
2195
2196 // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded
2197 // value.
2198 //
2199 // First, we need to check if cpuid(4) is supported on this chip. To see if
2200 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n
2201 // or greater.
2202 __kmp_x86_cpuid(0, 0, &buf);
2203 if (buf.eax >= 4) {
2204 __kmp_x86_cpuid(4, 0, &buf);
2205 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
2206 } else {
2207 threadInfo[nApics].maxCoresPerPkg = 1;
2208 }
2209
2210 // Infer the pkgId / coreId / threadId using only the info obtained locally.
2211 int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg);
2212 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
2213
2214 int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg);
2215 int widthT = widthCT - widthC;
2216 if (widthT < 0) {
2217 // I've never seen this one happen, but I suppose it could, if the cpuid
2218 // instruction on a chip was really screwed up. Make sure to restore the
2219 // affinity mask before the tail call.
2220 __kmp_free(threadInfo);
2221 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
2222 return false;
2223 }
2224
2225 int maskC = (1 << widthC) - 1;
2226 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC;
2227
2228 int maskT = (1 << widthT) - 1;
2229 threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT;
2230
2231 nApics++;
2232 }
2233
2234 // We've collected all the info we need.
2235 // Restore the old affinity mask for this thread.
2236 previous_affinity.restore();
2237
2238 // Sort the threadInfo table by physical Id.
2239 qsort(threadInfo, nApics, sizeof(*threadInfo),
2240 __kmp_affinity_cmp_apicThreadInfo_phys_id);
2241
2242 // The table is now sorted by pkgId / coreId / threadId, but we really don't
2243 // know the radix of any of the fields. pkgId's may be sparsely assigned among
2244 // the chips on a system. Although coreId's are usually assigned
2245 // [0 .. coresPerPkg-1] and threadId's are usually assigned
2246 // [0..threadsPerCore-1], we don't want to make any such assumptions.
2247 //
2248 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
2249 // total # packages) are at this point - we want to determine that now. We
2250 // only have an upper bound on the first two figures.
2251 //
2252 // We also perform a consistency check at this point: the values returned by
2253 // the cpuid instruction for any thread bound to a given package had better
2254 // return the same info for maxThreadsPerPkg and maxCoresPerPkg.
2255 nPackages = 1;
2256 nCoresPerPkg = 1;
2257 __kmp_nThreadsPerCore = 1;
2258 unsigned nCores = 1;
2259
2260 unsigned pkgCt = 1; // to determine radii
2261 unsigned lastPkgId = threadInfo[0].pkgId;
2262 unsigned coreCt = 1;
2263 unsigned lastCoreId = threadInfo[0].coreId;
2264 unsigned threadCt = 1;
2265 unsigned lastThreadId = threadInfo[0].threadId;
2266
2267 // intra-pkg consist checks
2268 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
2269 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
2270
2271 for (i = 1; i < nApics; i++) {
2272 if (threadInfo[i].pkgId != lastPkgId) {
2273 nCores++;
2274 pkgCt++;
2275 lastPkgId = threadInfo[i].pkgId;
2276 if ((int)coreCt > nCoresPerPkg)
2277 nCoresPerPkg = coreCt;
2278 coreCt = 1;
2279 lastCoreId = threadInfo[i].coreId;
2280 if ((int)threadCt > __kmp_nThreadsPerCore)
2281 __kmp_nThreadsPerCore = threadCt;
2282 threadCt = 1;
2283 lastThreadId = threadInfo[i].threadId;
2284
2285 // This is a different package, so go on to the next iteration without
2286 // doing any consistency checks. Reset the consistency check vars, though.
2287 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
2288 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
2289 continue;
2290 }
2291
2292 if (threadInfo[i].coreId != lastCoreId) {
2293 nCores++;
2294 coreCt++;
2295 lastCoreId = threadInfo[i].coreId;
2296 if ((int)threadCt > __kmp_nThreadsPerCore)
2297 __kmp_nThreadsPerCore = threadCt;
2298 threadCt = 1;
2299 lastThreadId = threadInfo[i].threadId;
2300 } else if (threadInfo[i].threadId != lastThreadId) {
2301 threadCt++;
2302 lastThreadId = threadInfo[i].threadId;
2303 } else {
2304 __kmp_free(threadInfo);
2305 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
2306 return false;
2307 }
2308
2309 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
2310 // fields agree between all the threads bounds to a given package.
2311 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) ||
2312 (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
2313 __kmp_free(threadInfo);
2314 *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
2315 return false;
2316 }
2317 }
2318 // When affinity is off, this routine will still be called to set
2319 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
2320 // Make sure all these vars are set correctly
2321 nPackages = pkgCt;
2322 if ((int)coreCt > nCoresPerPkg)
2323 nCoresPerPkg = coreCt;
2324 if ((int)threadCt > __kmp_nThreadsPerCore)
2325 __kmp_nThreadsPerCore = threadCt;
2326 __kmp_ncores = nCores;
2327 KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc);
2328
2329 // Now that we've determined the number of packages, the number of cores per
2330 // package, and the number of threads per core, we can construct the data
2331 // structure that is to be returned.
2332 int idx = 0;
2333 int pkgLevel = 0;
2334 int coreLevel = 1;
2335 int threadLevel = 2;
2336 //(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
2337 int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
2338 kmp_hw_t types[3];
2339 if (pkgLevel >= 0)
2340 types[idx++] = KMP_HW_SOCKET;
2341 if (coreLevel >= 0)
2342 types[idx++] = KMP_HW_CORE;
2343 if (threadLevel >= 0)
2344 types[idx++] = KMP_HW_THREAD;
2345
2346 KMP_ASSERT(depth > 0);
2347 __kmp_topology = kmp_topology_t::allocate(nApics, depth, types);
2348
2349 for (i = 0; i < nApics; ++i) {
2350 idx = 0;
2351 unsigned os = threadInfo[i].osId;
2352 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
2353 hw_thread.clear();
2354
2355 if (pkgLevel >= 0) {
2356 hw_thread.ids[idx++] = threadInfo[i].pkgId;
2357 }
2358 if (coreLevel >= 0) {
2359 hw_thread.ids[idx++] = threadInfo[i].coreId;
2360 }
2361 if (threadLevel >= 0) {
2362 hw_thread.ids[idx++] = threadInfo[i].threadId;
2363 }
2364 hw_thread.os_id = os;
2365 }
2366
2367 __kmp_free(threadInfo);
2368 __kmp_topology->sort_ids();
2369 if (!__kmp_topology->check_ids()) {
2370 kmp_topology_t::deallocate(__kmp_topology);
2371 __kmp_topology = nullptr;
2372 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
2373 return false;
2374 }
2375 return true;
2376}
2377
2378// Hybrid cpu detection using CPUID.1A
2379// Thread should be pinned to processor already
2380static void __kmp_get_hybrid_info(kmp_hw_core_type_t *type, int *efficiency,
2381 unsigned *native_model_id) {
2382 kmp_cpuid buf;
2383 __kmp_x86_cpuid(0x1a, 0, &buf);
2384 *type = (kmp_hw_core_type_t)__kmp_extract_bits<24, 31>(buf.eax);
2385 switch (*type) {
2386 case KMP_HW_CORE_TYPE_ATOM:
2387 *efficiency = 0;
2388 break;
2389 case KMP_HW_CORE_TYPE_CORE:
2390 *efficiency = 1;
2391 break;
2392 default:
2393 *efficiency = 0;
2394 }
2395 *native_model_id = __kmp_extract_bits<0, 23>(buf.eax);
2396}
2397
2398// Intel(R) microarchitecture code name Nehalem, Dunnington and later
2399// architectures support a newer interface for specifying the x2APIC Ids,
2400// based on CPUID.B or CPUID.1F
2401/*
2402 * CPUID.B or 1F, Input ECX (sub leaf # aka level number)
2403 Bits Bits Bits Bits
2404 31-16 15-8 7-4 4-0
2405---+-----------+--------------+-------------+-----------------+
2406EAX| reserved | reserved | reserved | Bits to Shift |
2407---+-----------|--------------+-------------+-----------------|
2408EBX| reserved | Num logical processors at level (16 bits) |
2409---+-----------|--------------+-------------------------------|
2410ECX| reserved | Level Type | Level Number (8 bits) |
2411---+-----------+--------------+-------------------------------|
2412EDX| X2APIC ID (32 bits) |
2413---+----------------------------------------------------------+
2414*/
2415
2416enum {
2417 INTEL_LEVEL_TYPE_INVALID = 0, // Package level
2418 INTEL_LEVEL_TYPE_SMT = 1,
2419 INTEL_LEVEL_TYPE_CORE = 2,
2420 INTEL_LEVEL_TYPE_TILE = 3,
2421 INTEL_LEVEL_TYPE_MODULE = 4,
2422 INTEL_LEVEL_TYPE_DIE = 5,
2423 INTEL_LEVEL_TYPE_LAST = 6,
2424};
2425
2426struct cpuid_level_info_t {
2427 unsigned level_type, mask, mask_width, nitems, cache_mask;
2428};
2429
2430static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) {
2431 switch (intel_type) {
2432 case INTEL_LEVEL_TYPE_INVALID:
2433 return KMP_HW_SOCKET;
2434 case INTEL_LEVEL_TYPE_SMT:
2435 return KMP_HW_THREAD;
2436 case INTEL_LEVEL_TYPE_CORE:
2437 return KMP_HW_CORE;
2438 case INTEL_LEVEL_TYPE_TILE:
2439 return KMP_HW_TILE;
2440 case INTEL_LEVEL_TYPE_MODULE:
2441 return KMP_HW_MODULE;
2442 case INTEL_LEVEL_TYPE_DIE:
2443 return KMP_HW_DIE;
2444 }
2445 return KMP_HW_UNKNOWN;
2446}
2447
2448// This function takes the topology leaf, a levels array to store the levels
2449// detected and a bitmap of the known levels.
2450// Returns the number of levels in the topology
2451static unsigned
2452__kmp_x2apicid_get_levels(int leaf,
2453 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST],
2454 kmp_uint64 known_levels) {
2455 unsigned level, levels_index;
2456 unsigned level_type, mask_width, nitems;
2457 kmp_cpuid buf;
2458
2459 // New algorithm has known topology layers act as highest unknown topology
2460 // layers when unknown topology layers exist.
2461 // e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z>
2462 // are unknown topology layers, Then SMT will take the characteristics of
2463 // (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>).
2464 // This eliminates unknown portions of the topology while still keeping the
2465 // correct structure.
2466 level = levels_index = 0;
2467 do {
2468 __kmp_x86_cpuid(leaf, level, &buf);
2469 level_type = __kmp_extract_bits<8, 15>(buf.ecx);
2470 mask_width = __kmp_extract_bits<0, 4>(buf.eax);
2471 nitems = __kmp_extract_bits<0, 15>(buf.ebx);
2472 if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0)
2473 return 0;
2474
2475 if (known_levels & (1ull << level_type)) {
2476 // Add a new level to the topology
2477 KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST);
2478 levels[levels_index].level_type = level_type;
2479 levels[levels_index].mask_width = mask_width;
2480 levels[levels_index].nitems = nitems;
2481 levels_index++;
2482 } else {
2483 // If it is an unknown level, then logically move the previous layer up
2484 if (levels_index > 0) {
2485 levels[levels_index - 1].mask_width = mask_width;
2486 levels[levels_index - 1].nitems = nitems;
2487 }
2488 }
2489 level++;
2490 } while (level_type != INTEL_LEVEL_TYPE_INVALID);
2491
2492 // Set the masks to & with apicid
2493 for (unsigned i = 0; i < levels_index; ++i) {
2494 if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) {
2495 levels[i].mask = ~((-1) << levels[i].mask_width);
2496 levels[i].cache_mask = (-1) << levels[i].mask_width;
2497 for (unsigned j = 0; j < i; ++j)
2498 levels[i].mask ^= levels[j].mask;
2499 } else {
2500 KMP_DEBUG_ASSERT(levels_index > 0);
2501 levels[i].mask = (-1) << levels[i - 1].mask_width;
2502 levels[i].cache_mask = 0;
2503 }
2504 }
2505 return levels_index;
2506}
2507
2508static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) {
2509
2510 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST];
2511 kmp_hw_t types[INTEL_LEVEL_TYPE_LAST];
2512 unsigned levels_index;
2513 kmp_cpuid buf;
2514 kmp_uint64 known_levels;
2515 int topology_leaf, highest_leaf, apic_id;
2516 int num_leaves;
2517 static int leaves[] = {0, 0};
2518
2519 kmp_i18n_id_t leaf_message_id;
2520
2521 KMP_BUILD_ASSERT(sizeof(known_levels) * CHAR_BIT > KMP_HW_LAST);
2522
2523 *msg_id = kmp_i18n_null;
2524 if (__kmp_affinity_verbose) {
2525 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
2526 }
2527
2528 // Figure out the known topology levels
2529 known_levels = 0ull;
2530 for (int i = 0; i < INTEL_LEVEL_TYPE_LAST; ++i) {
2531 if (__kmp_intel_type_2_topology_type(i) != KMP_HW_UNKNOWN) {
2532 known_levels |= (1ull << i);
2533 }
2534 }
2535
2536 // Get the highest cpuid leaf supported
2537 __kmp_x86_cpuid(0, 0, &buf);
2538 highest_leaf = buf.eax;
2539
2540 // If a specific topology method was requested, only allow that specific leaf
2541 // otherwise, try both leaves 31 and 11 in that order
2542 num_leaves = 0;
2543 if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
2544 num_leaves = 1;
2545 leaves[0] = 11;
2546 leaf_message_id = kmp_i18n_str_NoLeaf11Support;
2547 } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
2548 num_leaves = 1;
2549 leaves[0] = 31;
2550 leaf_message_id = kmp_i18n_str_NoLeaf31Support;
2551 } else {
2552 num_leaves = 2;
2553 leaves[0] = 31;
2554 leaves[1] = 11;
2555 leaf_message_id = kmp_i18n_str_NoLeaf11Support;
2556 }
2557
2558 // Check to see if cpuid leaf 31 or 11 is supported.
2559 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
2560 topology_leaf = -1;
2561 for (int i = 0; i < num_leaves; ++i) {
2562 int leaf = leaves[i];
2563 if (highest_leaf < leaf)
2564 continue;
2565 __kmp_x86_cpuid(leaf, 0, &buf);
2566 if (buf.ebx == 0)
2567 continue;
2568 topology_leaf = leaf;
2569 levels_index = __kmp_x2apicid_get_levels(leaf, levels, known_levels);
2570 if (levels_index == 0)
2571 continue;
2572 break;
2573 }
2574 if (topology_leaf == -1 || levels_index == 0) {
2575 *msg_id = leaf_message_id;
2576 return false;
2577 }
2578 KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST);
2579
2580 // The algorithm used starts by setting the affinity to each available thread
2581 // and retrieving info from the cpuid instruction, so if we are not capable of
2582 // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then
2583 // we need to do something else - use the defaults that we calculated from
2584 // issuing cpuid without binding to each proc.
2585 if (!KMP_AFFINITY_CAPABLE()) {
2586 // Hack to try and infer the machine topology using only the data
2587 // available from cpuid on the current thread, and __kmp_xproc.
2588 KMP_ASSERT(__kmp_affinity_type == affinity_none);
2589 for (unsigned i = 0; i < levels_index; ++i) {
2590 if (levels[i].level_type == INTEL_LEVEL_TYPE_SMT) {
2591 __kmp_nThreadsPerCore = levels[i].nitems;
2592 } else if (levels[i].level_type == INTEL_LEVEL_TYPE_CORE) {
2593 nCoresPerPkg = levels[i].nitems;
2594 }
2595 }
2596 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
2597 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
2598 return true;
2599 }
2600
2601 // Allocate the data structure to be returned.
2602 int depth = levels_index;
2603 for (int i = depth - 1, j = 0; i >= 0; --i, ++j)
2604 types[j] = __kmp_intel_type_2_topology_type(levels[i].level_type);
2605 __kmp_topology =
2606 kmp_topology_t::allocate(__kmp_avail_proc, levels_index, types);
2607
2608 // Insert equivalent cache types if they exist
2609 kmp_cache_info_t cache_info;
2610 for (size_t i = 0; i < cache_info.get_depth(); ++i) {
2611 const kmp_cache_info_t::info_t &info = cache_info[i];
2612 unsigned cache_mask = info.mask;
2613 unsigned cache_level = info.level;
2614 for (unsigned j = 0; j < levels_index; ++j) {
2615 unsigned hw_cache_mask = levels[j].cache_mask;
2616 kmp_hw_t cache_type = kmp_cache_info_t::get_topology_type(cache_level);
2617 if (hw_cache_mask == cache_mask && j < levels_index - 1) {
2618 kmp_hw_t type =
2619 __kmp_intel_type_2_topology_type(levels[j + 1].level_type);
2620 __kmp_topology->set_equivalent_type(cache_type, type);
2621 }
2622 }
2623 }
2624
2625 // From here on, we can assume that it is safe to call
2626 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
2627 // __kmp_affinity_type = affinity_none.
2628
2629 // Save the affinity mask for the current thread.
2630 kmp_affinity_raii_t previous_affinity;
2631
2632 // Run through each of the available contexts, binding the current thread
2633 // to it, and obtaining the pertinent information using the cpuid instr.
2634 unsigned int proc;
2635 int hw_thread_index = 0;
2636 KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) {
2637 cpuid_level_info_t my_levels[INTEL_LEVEL_TYPE_LAST];
2638 unsigned my_levels_index;
2639
2640 // Skip this proc if it is not included in the machine model.
2641 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
2642 continue;
2643 }
2644 KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc);
2645
2646 __kmp_affinity_dispatch->bind_thread(proc);
2647
2648 // New algorithm
2649 __kmp_x86_cpuid(topology_leaf, 0, &buf);
2650 apic_id = buf.edx;
2651 kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
2652 my_levels_index =
2653 __kmp_x2apicid_get_levels(topology_leaf, my_levels, known_levels);
2654 if (my_levels_index == 0 || my_levels_index != levels_index) {
2655 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
2656 return false;
2657 }
2658 hw_thread.clear();
2659 hw_thread.os_id = proc;
2660 // Put in topology information
2661 for (unsigned j = 0, idx = depth - 1; j < my_levels_index; ++j, --idx) {
2662 hw_thread.ids[idx] = apic_id & my_levels[j].mask;
2663 if (j > 0) {
2664 hw_thread.ids[idx] >>= my_levels[j - 1].mask_width;
2665 }
2666 }
2667 // Hybrid information
2668 if (__kmp_is_hybrid_cpu() && highest_leaf >= 0x1a) {
2669 kmp_hw_core_type_t type;
2670 unsigned native_model_id;
2671 int efficiency;
2672 __kmp_get_hybrid_info(&type, &efficiency, &native_model_id);
2673 hw_thread.attrs.set_core_type(type);
2674 hw_thread.attrs.set_core_eff(efficiency);
2675 }
2676 hw_thread_index++;
2677 }
2678 KMP_ASSERT(hw_thread_index > 0);
2679 __kmp_topology->sort_ids();
2680 if (!__kmp_topology->check_ids()) {
2681 kmp_topology_t::deallocate(__kmp_topology);
2682 __kmp_topology = nullptr;
2683 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
2684 return false;
2685 }
2686 return true;
2687}
2688#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
2689
2690#define osIdIndex 0
2691#define threadIdIndex 1
2692#define coreIdIndex 2
2693#define pkgIdIndex 3
2694#define nodeIdIndex 4
2695
2696typedef unsigned *ProcCpuInfo;
2697static unsigned maxIndex = pkgIdIndex;
2698
2699static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a,
2700 const void *b) {
2701 unsigned i;
2702 const unsigned *aa = *(unsigned *const *)a;
2703 const unsigned *bb = *(unsigned *const *)b;
2704 for (i = maxIndex;; i--) {
2705 if (aa[i] < bb[i])
2706 return -1;
2707 if (aa[i] > bb[i])
2708 return 1;
2709 if (i == osIdIndex)
2710 break;
2711 }
2712 return 0;
2713}
2714
2715#if KMP_USE_HIER_SCHED
2716// Set the array sizes for the hierarchy layers
2717static void __kmp_dispatch_set_hierarchy_values() {
2718 // Set the maximum number of L1's to number of cores
2719 // Set the maximum number of L2's to to either number of cores / 2 for
2720 // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing
2721 // Or the number of cores for Intel(R) Xeon(R) processors
2722 // Set the maximum number of NUMA nodes and L3's to number of packages
2723 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] =
2724 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
2725 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores;
2726#if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \
2727 KMP_MIC_SUPPORTED
2728 if (__kmp_mic_type >= mic3)
2729 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2;
2730 else
2731#endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
2732 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores;
2733 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages;
2734 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages;
2735 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1;
2736 // Set the number of threads per unit
2737 // Number of hardware threads per L1/L2/L3/NUMA/LOOP
2738 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1;
2739 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] =
2740 __kmp_nThreadsPerCore;
2741#if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \
2742 KMP_MIC_SUPPORTED
2743 if (__kmp_mic_type >= mic3)
2744 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
2745 2 * __kmp_nThreadsPerCore;
2746 else
2747#endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
2748 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
2749 __kmp_nThreadsPerCore;
2750 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] =
2751 nCoresPerPkg * __kmp_nThreadsPerCore;
2752 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] =
2753 nCoresPerPkg * __kmp_nThreadsPerCore;
2754 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] =
2755 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
2756}
2757
2758// Return the index into the hierarchy for this tid and layer type (L1, L2, etc)
2759// i.e., this thread's L1 or this thread's L2, etc.
2760int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) {
2761 int index = type + 1;
2762 int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1];
2763 KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST);
2764 if (type == kmp_hier_layer_e::LAYER_THREAD)
2765 return tid;
2766 else if (type == kmp_hier_layer_e::LAYER_LOOP)
2767 return 0;
2768 KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0);
2769 if (tid >= num_hw_threads)
2770 tid = tid % num_hw_threads;
2771 return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index];
2772}
2773
2774// Return the number of t1's per t2
2775int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) {
2776 int i1 = t1 + 1;
2777 int i2 = t2 + 1;
2778 KMP_DEBUG_ASSERT(i1 <= i2);
2779 KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST);
2780 KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST);
2781 KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0);
2782 // (nthreads/t2) / (nthreads/t1) = t1 / t2
2783 return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1];
2784}
2785#endif // KMP_USE_HIER_SCHED
2786
2787static inline const char *__kmp_cpuinfo_get_filename() {
2788 const char *filename;
2789 if (__kmp_cpuinfo_file != nullptr)
2790 filename = __kmp_cpuinfo_file;
2791 else
2792 filename = "/proc/cpuinfo";
2793 return filename;
2794}
2795
2796static inline const char *__kmp_cpuinfo_get_envvar() {
2797 const char *envvar = nullptr;
2798 if (__kmp_cpuinfo_file != nullptr)
2799 envvar = "KMP_CPUINFO_FILE";
2800 return envvar;
2801}
2802
2803// Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
2804// affinity map.
2805static bool __kmp_affinity_create_cpuinfo_map(int *line,
2806 kmp_i18n_id_t *const msg_id) {
2807 const char *filename = __kmp_cpuinfo_get_filename();
2808 const char *envvar = __kmp_cpuinfo_get_envvar();
2809 *msg_id = kmp_i18n_null;
2810
2811 if (__kmp_affinity_verbose) {
2812 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
2813 }
2814
2815 kmp_safe_raii_file_t f(filename, "r", envvar);
2816
2817 // Scan of the file, and count the number of "processor" (osId) fields,
2818 // and find the highest value of <n> for a node_<n> field.
2819 char buf[256];
2820 unsigned num_records = 0;
2821 while (!feof(f)) {
2822 buf[sizeof(buf) - 1] = 1;
2823 if (!fgets(buf, sizeof(buf), f)) {
2824 // Read errors presumably because of EOF
2825 break;
2826 }
2827
2828 char s1[] = "processor";
2829 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2830 num_records++;
2831 continue;
2832 }
2833
2834 // FIXME - this will match "node_<n> <garbage>"
2835 unsigned level;
2836 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
2837 // validate the input fisrt:
2838 if (level > (unsigned)__kmp_xproc) { // level is too big
2839 level = __kmp_xproc;
2840 }
2841 if (nodeIdIndex + level >= maxIndex) {
2842 maxIndex = nodeIdIndex + level;
2843 }
2844 continue;
2845 }
2846 }
2847
2848 // Check for empty file / no valid processor records, or too many. The number
2849 // of records can't exceed the number of valid bits in the affinity mask.
2850 if (num_records == 0) {
2851 *msg_id = kmp_i18n_str_NoProcRecords;
2852 return false;
2853 }
2854 if (num_records > (unsigned)__kmp_xproc) {
2855 *msg_id = kmp_i18n_str_TooManyProcRecords;
2856 return false;
2857 }
2858
2859 // Set the file pointer back to the beginning, so that we can scan the file
2860 // again, this time performing a full parse of the data. Allocate a vector of
2861 // ProcCpuInfo object, where we will place the data. Adding an extra element
2862 // at the end allows us to remove a lot of extra checks for termination
2863 // conditions.
2864 if (fseek(f, 0, SEEK_SET) != 0) {
2865 *msg_id = kmp_i18n_str_CantRewindCpuinfo;
2866 return false;
2867 }
2868
2869 // Allocate the array of records to store the proc info in. The dummy
2870 // element at the end makes the logic in filling them out easier to code.
2871 unsigned **threadInfo =
2872 (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *));
2873 unsigned i;
2874 for (i = 0; i <= num_records; i++) {
2875 threadInfo[i] =
2876 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2877 }
2878
2879#define CLEANUP_THREAD_INFO \
2880 for (i = 0; i <= num_records; i++) { \
2881 __kmp_free(threadInfo[i]); \
2882 } \
2883 __kmp_free(threadInfo);
2884
2885 // A value of UINT_MAX means that we didn't find the field
2886 unsigned __index;
2887
2888#define INIT_PROC_INFO(p) \
2889 for (__index = 0; __index <= maxIndex; __index++) { \
2890 (p)[__index] = UINT_MAX; \
2891 }
2892
2893 for (i = 0; i <= num_records; i++) {
2894 INIT_PROC_INFO(threadInfo[i]);
2895 }
2896
2897 unsigned num_avail = 0;
2898 *line = 0;
2899 while (!feof(f)) {
2900 // Create an inner scoping level, so that all the goto targets at the end of
2901 // the loop appear in an outer scoping level. This avoids warnings about
2902 // jumping past an initialization to a target in the same block.
2903 {
2904 buf[sizeof(buf) - 1] = 1;
2905 bool long_line = false;
2906 if (!fgets(buf, sizeof(buf), f)) {
2907 // Read errors presumably because of EOF
2908 // If there is valid data in threadInfo[num_avail], then fake
2909 // a blank line in ensure that the last address gets parsed.
2910 bool valid = false;
2911 for (i = 0; i <= maxIndex; i++) {
2912 if (threadInfo[num_avail][i] != UINT_MAX) {
2913 valid = true;
2914 }
2915 }
2916 if (!valid) {
2917 break;
2918 }
2919 buf[0] = 0;
2920 } else if (!buf[sizeof(buf) - 1]) {
2921 // The line is longer than the buffer. Set a flag and don't
2922 // emit an error if we were going to ignore the line, anyway.
2923 long_line = true;
2924
2925#define CHECK_LINE \
2926 if (long_line) { \
2927 CLEANUP_THREAD_INFO; \
2928 *msg_id = kmp_i18n_str_LongLineCpuinfo; \
2929 return false; \
2930 }
2931 }
2932 (*line)++;
2933
2934 char s1[] = "processor";
2935 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2936 CHECK_LINE;
2937 char *p = strchr(buf + sizeof(s1) - 1, ':');
2938 unsigned val;
2939 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2940 goto no_val;
2941 if (threadInfo[num_avail][osIdIndex] != UINT_MAX)
2942#if KMP_ARCH_AARCH64
2943 // Handle the old AArch64 /proc/cpuinfo layout differently,
2944 // it contains all of the 'processor' entries listed in a
2945 // single 'Processor' section, therefore the normal looking
2946 // for duplicates in that section will always fail.
2947 num_avail++;
2948#else
2949 goto dup_field;
2950#endif
2951 threadInfo[num_avail][osIdIndex] = val;
2952#if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64)
2953 char path[256];
2954 KMP_SNPRINTF(
2955 path, sizeof(path),
2956 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
2957 threadInfo[num_avail][osIdIndex]);
2958 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
2959
2960 KMP_SNPRINTF(path, sizeof(path),
2961 "/sys/devices/system/cpu/cpu%u/topology/core_id",
2962 threadInfo[num_avail][osIdIndex]);
2963 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
2964 continue;
2965#else
2966 }
2967 char s2[] = "physical id";
2968 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
2969 CHECK_LINE;
2970 char *p = strchr(buf + sizeof(s2) - 1, ':');
2971 unsigned val;
2972 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2973 goto no_val;
2974 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX)
2975 goto dup_field;
2976 threadInfo[num_avail][pkgIdIndex] = val;
2977 continue;
2978 }
2979 char s3[] = "core id";
2980 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
2981 CHECK_LINE;
2982 char *p = strchr(buf + sizeof(s3) - 1, ':');
2983 unsigned val;
2984 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2985 goto no_val;
2986 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX)
2987 goto dup_field;
2988 threadInfo[num_avail][coreIdIndex] = val;
2989 continue;
2990#endif // KMP_OS_LINUX && USE_SYSFS_INFO
2991 }
2992 char s4[] = "thread id";
2993 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
2994 CHECK_LINE;
2995 char *p = strchr(buf + sizeof(s4) - 1, ':');
2996 unsigned val;
2997 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2998 goto no_val;
2999 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX)
3000 goto dup_field;
3001 threadInfo[num_avail][threadIdIndex] = val;
3002 continue;
3003 }
3004 unsigned level;
3005 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
3006 CHECK_LINE;
3007 char *p = strchr(buf + sizeof(s4) - 1, ':');
3008 unsigned val;
3009 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3010 goto no_val;
3011 // validate the input before using level:
3012 if (level > (unsigned)__kmp_xproc) { // level is too big
3013 level = __kmp_xproc;
3014 }
3015 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX)
3016 goto dup_field;
3017 threadInfo[num_avail][nodeIdIndex + level] = val;
3018 continue;
3019 }
3020
3021 // We didn't recognize the leading token on the line. There are lots of
3022 // leading tokens that we don't recognize - if the line isn't empty, go on
3023 // to the next line.
3024 if ((*buf != 0) && (*buf != '\n')) {
3025 // If the line is longer than the buffer, read characters
3026 // until we find a newline.
3027 if (long_line) {
3028 int ch;
3029 while (((ch = fgetc(f)) != EOF) && (ch != '\n'))
3030 ;
3031 }
3032 continue;
3033 }
3034
3035 // A newline has signalled the end of the processor record.
3036 // Check that there aren't too many procs specified.
3037 if ((int)num_avail == __kmp_xproc) {
3038 CLEANUP_THREAD_INFO;
3039 *msg_id = kmp_i18n_str_TooManyEntries;
3040 return false;
3041 }
3042
3043 // Check for missing fields. The osId field must be there, and we
3044 // currently require that the physical id field is specified, also.
3045 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
3046 CLEANUP_THREAD_INFO;
3047 *msg_id = kmp_i18n_str_MissingProcField;
3048 return false;
3049 }
3050 if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
3051 CLEANUP_THREAD_INFO;
3052 *msg_id = kmp_i18n_str_MissingPhysicalIDField;
3053 return false;
3054 }
3055
3056 // Skip this proc if it is not included in the machine model.
3057 if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex],
3058 __kmp_affin_fullMask)) {
3059 INIT_PROC_INFO(threadInfo[num_avail]);
3060 continue;
3061 }
3062
3063 // We have a successful parse of this proc's info.
3064 // Increment the counter, and prepare for the next proc.
3065 num_avail++;
3066 KMP_ASSERT(num_avail <= num_records);
3067 INIT_PROC_INFO(threadInfo[num_avail]);
3068 }
3069 continue;
3070
3071 no_val:
3072 CLEANUP_THREAD_INFO;
3073 *msg_id = kmp_i18n_str_MissingValCpuinfo;
3074 return false;
3075
3076 dup_field:
3077 CLEANUP_THREAD_INFO;
3078 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
3079 return false;
3080 }
3081 *line = 0;
3082
3083#if KMP_MIC && REDUCE_TEAM_SIZE
3084 unsigned teamSize = 0;
3085#endif // KMP_MIC && REDUCE_TEAM_SIZE
3086
3087 // check for num_records == __kmp_xproc ???
3088
3089 // If it is configured to omit the package level when there is only a single
3090 // package, the logic at the end of this routine won't work if there is only a
3091 // single thread
3092 KMP_ASSERT(num_avail > 0);
3093 KMP_ASSERT(num_avail <= num_records);
3094
3095 // Sort the threadInfo table by physical Id.
3096 qsort(threadInfo, num_avail, sizeof(*threadInfo),
3097 __kmp_affinity_cmp_ProcCpuInfo_phys_id);
3098
3099 // The table is now sorted by pkgId / coreId / threadId, but we really don't
3100 // know the radix of any of the fields. pkgId's may be sparsely assigned among
3101 // the chips on a system. Although coreId's are usually assigned
3102 // [0 .. coresPerPkg-1] and threadId's are usually assigned
3103 // [0..threadsPerCore-1], we don't want to make any such assumptions.
3104 //
3105 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
3106 // total # packages) are at this point - we want to determine that now. We
3107 // only have an upper bound on the first two figures.
3108 unsigned *counts =
3109 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3110 unsigned *maxCt =
3111 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3112 unsigned *totals =
3113 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3114 unsigned *lastId =
3115 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3116
3117 bool assign_thread_ids = false;
3118 unsigned threadIdCt;
3119 unsigned index;
3120
3121restart_radix_check:
3122 threadIdCt = 0;
3123
3124 // Initialize the counter arrays with data from threadInfo[0].
3125 if (assign_thread_ids) {
3126 if (threadInfo[0][threadIdIndex] == UINT_MAX) {
3127 threadInfo[0][threadIdIndex] = threadIdCt++;
3128 } else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
3129 threadIdCt = threadInfo[0][threadIdIndex] + 1;
3130 }
3131 }
3132 for (index = 0; index <= maxIndex; index++) {
3133 counts[index] = 1;
3134 maxCt[index] = 1;
3135 totals[index] = 1;
3136 lastId[index] = threadInfo[0][index];
3137 ;
3138 }
3139
3140 // Run through the rest of the OS procs.
3141 for (i = 1; i < num_avail; i++) {
3142 // Find the most significant index whose id differs from the id for the
3143 // previous OS proc.
3144 for (index = maxIndex; index >= threadIdIndex; index--) {
3145 if (assign_thread_ids && (index == threadIdIndex)) {
3146 // Auto-assign the thread id field if it wasn't specified.
3147 if (threadInfo[i][threadIdIndex] == UINT_MAX) {
3148 threadInfo[i][threadIdIndex] = threadIdCt++;
3149 }
3150 // Apparently the thread id field was specified for some entries and not
3151 // others. Start the thread id counter off at the next higher thread id.
3152 else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
3153 threadIdCt = threadInfo[i][threadIdIndex] + 1;
3154 }
3155 }
3156 if (threadInfo[i][index] != lastId[index]) {
3157 // Run through all indices which are less significant, and reset the
3158 // counts to 1. At all levels up to and including index, we need to
3159 // increment the totals and record the last id.
3160 unsigned index2;
3161 for (index2 = threadIdIndex; index2 < index; index2++) {
3162 totals[index2]++;
3163 if (counts[index2] > maxCt[index2]) {
3164 maxCt[index2] = counts[index2];
3165 }
3166 counts[index2] = 1;
3167 lastId[index2] = threadInfo[i][index2];
3168 }
3169 counts[index]++;
3170 totals[index]++;
3171 lastId[index] = threadInfo[i][index];
3172
3173 if (assign_thread_ids && (index > threadIdIndex)) {
3174
3175#if KMP_MIC && REDUCE_TEAM_SIZE
3176 // The default team size is the total #threads in the machine
3177 // minus 1 thread for every core that has 3 or more threads.
3178 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
3179#endif // KMP_MIC && REDUCE_TEAM_SIZE
3180
3181 // Restart the thread counter, as we are on a new core.
3182 threadIdCt = 0;
3183
3184 // Auto-assign the thread id field if it wasn't specified.
3185 if (threadInfo[i][threadIdIndex] == UINT_MAX) {
3186 threadInfo[i][threadIdIndex] = threadIdCt++;
3187 }
3188
3189 // Apparently the thread id field was specified for some entries and
3190 // not others. Start the thread id counter off at the next higher
3191 // thread id.
3192 else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
3193 threadIdCt = threadInfo[i][threadIdIndex] + 1;
3194 }
3195 }
3196 break;
3197 }
3198 }
3199 if (index < threadIdIndex) {
3200 // If thread ids were specified, it is an error if they are not unique.
3201 // Also, check that we waven't already restarted the loop (to be safe -
3202 // shouldn't need to).
3203 if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) {
3204 __kmp_free(lastId);
3205 __kmp_free(totals);
3206 __kmp_free(maxCt);
3207 __kmp_free(counts);
3208 CLEANUP_THREAD_INFO;
3209 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
3210 return false;
3211 }
3212
3213 // If the thread ids were not specified and we see entries entries that
3214 // are duplicates, start the loop over and assign the thread ids manually.
3215 assign_thread_ids = true;
3216 goto restart_radix_check;
3217 }
3218 }
3219
3220#if KMP_MIC && REDUCE_TEAM_SIZE
3221 // The default team size is the total #threads in the machine
3222 // minus 1 thread for every core that has 3 or more threads.
3223 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
3224#endif // KMP_MIC && REDUCE_TEAM_SIZE
3225
3226 for (index = threadIdIndex; index <= maxIndex; index++) {
3227 if (counts[index] > maxCt[index]) {
3228 maxCt[index] = counts[index];
3229 }
3230 }
3231
3232 __kmp_nThreadsPerCore = maxCt[threadIdIndex];
3233 nCoresPerPkg = maxCt[coreIdIndex];
3234 nPackages = totals[pkgIdIndex];
3235
3236 // When affinity is off, this routine will still be called to set
3237 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
3238 // Make sure all these vars are set correctly, and return now if affinity is
3239 // not enabled.
3240 __kmp_ncores = totals[coreIdIndex];
3241 if (!KMP_AFFINITY_CAPABLE()) {
3242 KMP_ASSERT(__kmp_affinity_type == affinity_none);
3243 return true;
3244 }
3245
3246#if KMP_MIC && REDUCE_TEAM_SIZE
3247 // Set the default team size.
3248 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
3249 __kmp_dflt_team_nth = teamSize;
3250 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting "
3251 "__kmp_dflt_team_nth = %d\n",
3252 __kmp_dflt_team_nth));
3253 }
3254#endif // KMP_MIC && REDUCE_TEAM_SIZE
3255
3256 KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc);
3257
3258 // Count the number of levels which have more nodes at that level than at the
3259 // parent's level (with there being an implicit root node of the top level).
3260 // This is equivalent to saying that there is at least one node at this level
3261 // which has a sibling. These levels are in the map, and the package level is
3262 // always in the map.
3263 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
3264 for (index = threadIdIndex; index < maxIndex; index++) {
3265 KMP_ASSERT(totals[index] >= totals[index + 1]);
3266 inMap[index] = (totals[index] > totals[index + 1]);
3267 }
3268 inMap[maxIndex] = (totals[maxIndex] > 1);
3269 inMap[pkgIdIndex] = true;
3270 inMap[coreIdIndex] = true;
3271 inMap[threadIdIndex] = true;
3272
3273 int depth = 0;
3274 int idx = 0;
3275 kmp_hw_t types[KMP_HW_LAST];
3276 int pkgLevel = -1;
3277 int coreLevel = -1;
3278 int threadLevel = -1;
3279 for (index = threadIdIndex; index <= maxIndex; index++) {
3280 if (inMap[index]) {
3281 depth++;
3282 }
3283 }
3284 if (inMap[pkgIdIndex]) {
3285 pkgLevel = idx;
3286 types[idx++] = KMP_HW_SOCKET;
3287 }
3288 if (inMap[coreIdIndex]) {
3289 coreLevel = idx;
3290 types[idx++] = KMP_HW_CORE;
3291 }
3292 if (inMap[threadIdIndex]) {
3293 threadLevel = idx;
3294 types[idx++] = KMP_HW_THREAD;
3295 }
3296 KMP_ASSERT(depth > 0);
3297
3298 // Construct the data structure that is to be returned.
3299 __kmp_topology = kmp_topology_t::allocate(num_avail, depth, types);
3300
3301 for (i = 0; i < num_avail; ++i) {
3302 unsigned os = threadInfo[i][osIdIndex];
3303 int src_index;
3304 int dst_index = 0;
3305 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
3306 hw_thread.clear();
3307 hw_thread.os_id = os;
3308
3309 idx = 0;
3310 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
3311 if (!inMap[src_index]) {
3312 continue;
3313 }
3314 if (src_index == pkgIdIndex) {
3315 hw_thread.ids[pkgLevel] = threadInfo[i][src_index];
3316 } else if (src_index == coreIdIndex) {
3317 hw_thread.ids[coreLevel] = threadInfo[i][src_index];
3318 } else if (src_index == threadIdIndex) {
3319 hw_thread.ids[threadLevel] = threadInfo[i][src_index];
3320 }
3321 dst_index++;
3322 }
3323 }
3324
3325 __kmp_free(inMap);
3326 __kmp_free(lastId);
3327 __kmp_free(totals);
3328 __kmp_free(maxCt);
3329 __kmp_free(counts);
3330 CLEANUP_THREAD_INFO;
3331 __kmp_topology->sort_ids();
3332 if (!__kmp_topology->check_ids()) {
3333 kmp_topology_t::deallocate(__kmp_topology);
3334 __kmp_topology = nullptr;
3335 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
3336 return false;
3337 }
3338 return true;
3339}
3340
3341// Create and return a table of affinity masks, indexed by OS thread ID.
3342// This routine handles OR'ing together all the affinity masks of threads
3343// that are sufficiently close, if granularity > fine.
3344static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex,
3345 unsigned *numUnique) {
3346 // First form a table of affinity masks in order of OS thread id.
3347 int maxOsId;
3348 int i;
3349 int numAddrs = __kmp_topology->get_num_hw_threads();
3350 int depth = __kmp_topology->get_depth();
3351 KMP_ASSERT(numAddrs);
3352 KMP_ASSERT(depth);
3353
3354 maxOsId = 0;
3355 for (i = numAddrs - 1;; --i) {
3356 int osId = __kmp_topology->at(i).os_id;
3357 if (osId > maxOsId) {
3358 maxOsId = osId;
3359 }
3360 if (i == 0)
3361 break;
3362 }
3363 kmp_affin_mask_t *osId2Mask;
3364 KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1));
3365 KMP_ASSERT(__kmp_affinity_gran_levels >= 0);
3366 if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) {
3367 KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels);
3368 }
3369 if (__kmp_affinity_gran_levels >= (int)depth) {
3370 KMP_AFF_WARNING(AffThreadsMayMigrate);
3371 }
3372
3373 // Run through the table, forming the masks for all threads on each core.
3374 // Threads on the same core will have identical kmp_hw_thread_t objects, not
3375 // considering the last level, which must be the thread id. All threads on a
3376 // core will appear consecutively.
3377 int unique = 0;
3378 int j = 0; // index of 1st thread on core
3379 int leader = 0;
3380 kmp_affin_mask_t *sum;
3381 KMP_CPU_ALLOC_ON_STACK(sum);
3382 KMP_CPU_ZERO(sum);
3383 KMP_CPU_SET(__kmp_topology->at(0).os_id, sum);
3384 for (i = 1; i < numAddrs; i++) {
3385 // If this thread is sufficiently close to the leader (within the
3386 // granularity setting), then set the bit for this os thread in the
3387 // affinity mask for this group, and go on to the next thread.
3388 if (__kmp_topology->is_close(leader, i, __kmp_affinity_gran_levels)) {
3389 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
3390 continue;
3391 }
3392
3393 // For every thread in this group, copy the mask to the thread's entry in
3394 // the osId2Mask table. Mark the first address as a leader.
3395 for (; j < i; j++) {
3396 int osId = __kmp_topology->at(j).os_id;
3397 KMP_DEBUG_ASSERT(osId <= maxOsId);
3398 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
3399 KMP_CPU_COPY(mask, sum);
3400 __kmp_topology->at(j).leader = (j == leader);
3401 }
3402 unique++;
3403
3404 // Start a new mask.
3405 leader = i;
3406 KMP_CPU_ZERO(sum);
3407 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
3408 }
3409
3410 // For every thread in last group, copy the mask to the thread's
3411 // entry in the osId2Mask table.
3412 for (; j < i; j++) {
3413 int osId = __kmp_topology->at(j).os_id;
3414 KMP_DEBUG_ASSERT(osId <= maxOsId);
3415 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
3416 KMP_CPU_COPY(mask, sum);
3417 __kmp_topology->at(j).leader = (j == leader);
3418 }
3419 unique++;
3420 KMP_CPU_FREE_FROM_STACK(sum);
3421
3422 *maxIndex = maxOsId;
3423 *numUnique = unique;
3424 return osId2Mask;
3425}
3426
3427// Stuff for the affinity proclist parsers. It's easier to declare these vars
3428// as file-static than to try and pass them through the calling sequence of
3429// the recursive-descent OMP_PLACES parser.
3430static kmp_affin_mask_t *newMasks;
3431static int numNewMasks;
3432static int nextNewMask;
3433
3434#define ADD_MASK(_mask) \
3435 { \
3436 if (nextNewMask >= numNewMasks) { \
3437 int i; \
3438 numNewMasks *= 2; \
3439 kmp_affin_mask_t *temp; \
3440 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \
3441 for (i = 0; i < numNewMasks / 2; i++) { \
3442 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \
3443 kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \
3444 KMP_CPU_COPY(dest, src); \
3445 } \
3446 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \
3447 newMasks = temp; \
3448 } \
3449 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \
3450 nextNewMask++; \
3451 }
3452
3453#define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \
3454 { \
3455 if (((_osId) > _maxOsId) || \
3456 (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \
3457 KMP_AFF_WARNING(AffIgnoreInvalidProcID, _osId); \
3458 } else { \
3459 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \
3460 } \
3461 }
3462
3463// Re-parse the proclist (for the explicit affinity type), and form the list
3464// of affinity newMasks indexed by gtid.
3465static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks,
3466 unsigned int *out_numMasks,
3467 const char *proclist,
3468 kmp_affin_mask_t *osId2Mask,
3469 int maxOsId) {
3470 int i;
3471 const char *scan = proclist;
3472 const char *next = proclist;
3473
3474 // We use malloc() for the temporary mask vector, so that we can use
3475 // realloc() to extend it.
3476 numNewMasks = 2;
3477 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
3478 nextNewMask = 0;
3479 kmp_affin_mask_t *sumMask;
3480 KMP_CPU_ALLOC(sumMask);
3481 int setSize = 0;
3482
3483 for (;;) {
3484 int start, end, stride;
3485
3486 SKIP_WS(scan);
3487 next = scan;
3488 if (*next == '\0') {
3489 break;
3490 }
3491
3492 if (*next == '{') {
3493 int num;
3494 setSize = 0;
3495 next++; // skip '{'
3496 SKIP_WS(next);
3497 scan = next;
3498
3499 // Read the first integer in the set.
3500 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist");
3501 SKIP_DIGITS(next);
3502 num = __kmp_str_to_int(scan, *next);
3503 KMP_ASSERT2(num >= 0, "bad explicit proc list");
3504
3505 // Copy the mask for that osId to the sum (union) mask.
3506 if ((num > maxOsId) ||
3507 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3508 KMP_AFF_WARNING(AffIgnoreInvalidProcID, num);
3509 KMP_CPU_ZERO(sumMask);
3510 } else {
3511 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
3512 setSize = 1;
3513 }
3514
3515 for (;;) {
3516 // Check for end of set.
3517 SKIP_WS(next);
3518 if (*next == '}') {
3519 next++; // skip '}'
3520 break;
3521 }
3522
3523 // Skip optional comma.
3524 if (*next == ',') {
3525 next++;
3526 }
3527 SKIP_WS(next);
3528
3529 // Read the next integer in the set.
3530 scan = next;
3531 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3532
3533 SKIP_DIGITS(next);
3534 num = __kmp_str_to_int(scan, *next);
3535 KMP_ASSERT2(num >= 0, "bad explicit proc list");
3536
3537 // Add the mask for that osId to the sum mask.
3538 if ((num > maxOsId) ||
3539 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3540 KMP_AFF_WARNING(AffIgnoreInvalidProcID, num);
3541 } else {
3542 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
3543 setSize++;
3544 }
3545 }
3546 if (setSize > 0) {
3547 ADD_MASK(sumMask);
3548 }
3549
3550 SKIP_WS(next);
3551 if (*next == ',') {
3552 next++;
3553 }
3554 scan = next;
3555 continue;
3556 }
3557
3558 // Read the first integer.
3559 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3560 SKIP_DIGITS(next);
3561 start = __kmp_str_to_int(scan, *next);
3562 KMP_ASSERT2(start >= 0, "bad explicit proc list");
3563 SKIP_WS(next);
3564
3565 // If this isn't a range, then add a mask to the list and go on.
3566 if (*next != '-') {
3567 ADD_MASK_OSID(start, osId2Mask, maxOsId);
3568
3569 // Skip optional comma.
3570 if (*next == ',') {
3571 next++;
3572 }
3573 scan = next;
3574 continue;
3575 }
3576
3577 // This is a range. Skip over the '-' and read in the 2nd int.
3578 next++; // skip '-'
3579 SKIP_WS(next);
3580 scan = next;
3581 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3582 SKIP_DIGITS(next);
3583 end = __kmp_str_to_int(scan, *next);
3584 KMP_ASSERT2(end >= 0, "bad explicit proc list");
3585
3586 // Check for a stride parameter
3587 stride = 1;
3588 SKIP_WS(next);
3589 if (*next == ':') {
3590 // A stride is specified. Skip over the ':" and read the 3rd int.
3591 int sign = +1;
3592 next++; // skip ':'
3593 SKIP_WS(next);
3594 scan = next;
3595 if (*next == '-') {
3596 sign = -1;
3597 next++;
3598 SKIP_WS(next);
3599 scan = next;
3600 }
3601 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3602 SKIP_DIGITS(next);
3603 stride = __kmp_str_to_int(scan, *next);
3604 KMP_ASSERT2(stride >= 0, "bad explicit proc list");
3605 stride *= sign;
3606 }
3607
3608 // Do some range checks.
3609 KMP_ASSERT2(stride != 0, "bad explicit proc list");
3610 if (stride > 0) {
3611 KMP_ASSERT2(start <= end, "bad explicit proc list");
3612 } else {
3613 KMP_ASSERT2(start >= end, "bad explicit proc list");
3614 }
3615 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
3616
3617 // Add the mask for each OS proc # to the list.
3618 if (stride > 0) {
3619 do {
3620 ADD_MASK_OSID(start, osId2Mask, maxOsId);
3621 start += stride;
3622 } while (start <= end);
3623 } else {
3624 do {
3625 ADD_MASK_OSID(start, osId2Mask, maxOsId);
3626 start += stride;
3627 } while (start >= end);
3628 }
3629
3630 // Skip optional comma.
3631 SKIP_WS(next);
3632 if (*next == ',') {
3633 next++;
3634 }
3635 scan = next;
3636 }
3637
3638 *out_numMasks = nextNewMask;
3639 if (nextNewMask == 0) {
3640 *out_masks = NULL;
3641 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3642 return;
3643 }
3644 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3645 for (i = 0; i < nextNewMask; i++) {
3646 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
3647 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
3648 KMP_CPU_COPY(dest, src);
3649 }
3650 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3651 KMP_CPU_FREE(sumMask);
3652}
3653
3654/*-----------------------------------------------------------------------------
3655Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
3656places. Again, Here is the grammar:
3657
3658place_list := place
3659place_list := place , place_list
3660place := num
3661place := place : num
3662place := place : num : signed
3663place := { subplacelist }
3664place := ! place // (lowest priority)
3665subplace_list := subplace
3666subplace_list := subplace , subplace_list
3667subplace := num
3668subplace := num : num
3669subplace := num : num : signed
3670signed := num
3671signed := + signed
3672signed := - signed
3673-----------------------------------------------------------------------------*/
3674static void __kmp_process_subplace_list(const char **scan,
3675 kmp_affin_mask_t *osId2Mask,
3676 int maxOsId, kmp_affin_mask_t *tempMask,
3677 int *setSize) {
3678 const char *next;
3679
3680 for (;;) {
3681 int start, count, stride, i;
3682
3683 // Read in the starting proc id
3684 SKIP_WS(*scan);
3685 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3686 next = *scan;
3687 SKIP_DIGITS(next);
3688 start = __kmp_str_to_int(*scan, *next);
3689 KMP_ASSERT(start >= 0);
3690 *scan = next;
3691
3692 // valid follow sets are ',' ':' and '}'
3693 SKIP_WS(*scan);
3694 if (**scan == '}' || **scan == ',') {
3695 if ((start > maxOsId) ||
3696 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3697 KMP_AFF_WARNING(AffIgnoreInvalidProcID, start);
3698 } else {
3699 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3700 (*setSize)++;
3701 }
3702 if (**scan == '}') {
3703 break;
3704 }
3705 (*scan)++; // skip ','
3706 continue;
3707 }
3708 KMP_ASSERT2(**scan == ':', "bad explicit places list");
3709 (*scan)++; // skip ':'
3710
3711 // Read count parameter
3712 SKIP_WS(*scan);
3713 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3714 next = *scan;
3715 SKIP_DIGITS(next);
3716 count = __kmp_str_to_int(*scan, *next);
3717 KMP_ASSERT(count >= 0);
3718 *scan = next;
3719
3720 // valid follow sets are ',' ':' and '}'
3721 SKIP_WS(*scan);
3722 if (**scan == '}' || **scan == ',') {
3723 for (i = 0; i < count; i++) {
3724 if ((start > maxOsId) ||
3725 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3726 KMP_AFF_WARNING(AffIgnoreInvalidProcID, start);
3727 break; // don't proliferate warnings for large count
3728 } else {
3729 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3730 start++;
3731 (*setSize)++;
3732 }
3733 }
3734 if (**scan == '}') {
3735 break;
3736 }
3737 (*scan)++; // skip ','
3738 continue;
3739 }
3740 KMP_ASSERT2(**scan == ':', "bad explicit places list");
3741 (*scan)++; // skip ':'
3742
3743 // Read stride parameter
3744 int sign = +1;
3745 for (;;) {
3746 SKIP_WS(*scan);
3747 if (**scan == '+') {
3748 (*scan)++; // skip '+'
3749 continue;
3750 }
3751 if (**scan == '-') {
3752 sign *= -1;
3753 (*scan)++; // skip '-'
3754 continue;
3755 }
3756 break;
3757 }
3758 SKIP_WS(*scan);
3759 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3760 next = *scan;
3761 SKIP_DIGITS(next);
3762 stride = __kmp_str_to_int(*scan, *next);
3763 KMP_ASSERT(stride >= 0);
3764 *scan = next;
3765 stride *= sign;
3766
3767 // valid follow sets are ',' and '}'
3768 SKIP_WS(*scan);
3769 if (**scan == '}' || **scan == ',') {
3770 for (i = 0; i < count; i++) {
3771 if ((start > maxOsId) ||
3772 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3773 KMP_AFF_WARNING(AffIgnoreInvalidProcID, start);
3774 break; // don't proliferate warnings for large count
3775 } else {
3776 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3777 start += stride;
3778 (*setSize)++;
3779 }
3780 }
3781 if (**scan == '}') {
3782 break;
3783 }
3784 (*scan)++; // skip ','
3785 continue;
3786 }
3787
3788 KMP_ASSERT2(0, "bad explicit places list");
3789 }
3790}
3791
3792static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask,
3793 int maxOsId, kmp_affin_mask_t *tempMask,
3794 int *setSize) {
3795 const char *next;
3796
3797 // valid follow sets are '{' '!' and num
3798 SKIP_WS(*scan);
3799 if (**scan == '{') {
3800 (*scan)++; // skip '{'
3801 __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize);
3802 KMP_ASSERT2(**scan == '}', "bad explicit places list");
3803 (*scan)++; // skip '}'
3804 } else if (**scan == '!') {
3805 (*scan)++; // skip '!'
3806 __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize);
3807 KMP_CPU_COMPLEMENT(maxOsId, tempMask);
3808 } else if ((**scan >= '0') && (**scan <= '9')) {
3809 next = *scan;
3810 SKIP_DIGITS(next);
3811 int num = __kmp_str_to_int(*scan, *next);
3812 KMP_ASSERT(num >= 0);
3813 if ((num > maxOsId) ||
3814 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3815 KMP_AFF_WARNING(AffIgnoreInvalidProcID, num);
3816 } else {
3817 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
3818 (*setSize)++;
3819 }
3820 *scan = next; // skip num
3821 } else {
3822 KMP_ASSERT2(0, "bad explicit places list");
3823 }
3824}
3825
3826// static void
3827void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks,
3828 unsigned int *out_numMasks,
3829 const char *placelist,
3830 kmp_affin_mask_t *osId2Mask,
3831 int maxOsId) {
3832 int i, j, count, stride, sign;
3833 const char *scan = placelist;
3834 const char *next = placelist;
3835
3836 numNewMasks = 2;
3837 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
3838 nextNewMask = 0;
3839
3840 // tempMask is modified based on the previous or initial
3841 // place to form the current place
3842 // previousMask contains the previous place
3843 kmp_affin_mask_t *tempMask;
3844 kmp_affin_mask_t *previousMask;
3845 KMP_CPU_ALLOC(tempMask);
3846 KMP_CPU_ZERO(tempMask);
3847 KMP_CPU_ALLOC(previousMask);
3848 KMP_CPU_ZERO(previousMask);
3849 int setSize = 0;
3850
3851 for (;;) {
3852 __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize);
3853
3854 // valid follow sets are ',' ':' and EOL
3855 SKIP_WS(scan);
3856 if (*scan == '\0' || *scan == ',') {
3857 if (setSize > 0) {
3858 ADD_MASK(tempMask);
3859 }
3860 KMP_CPU_ZERO(tempMask);
3861 setSize = 0;
3862 if (*scan == '\0') {
3863 break;
3864 }
3865 scan++; // skip ','
3866 continue;
3867 }
3868
3869 KMP_ASSERT2(*scan == ':', "bad explicit places list");
3870 scan++; // skip ':'
3871
3872 // Read count parameter
3873 SKIP_WS(scan);
3874 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
3875 next = scan;
3876 SKIP_DIGITS(next);
3877 count = __kmp_str_to_int(scan, *next);
3878 KMP_ASSERT(count >= 0);
3879 scan = next;
3880
3881 // valid follow sets are ',' ':' and EOL
3882 SKIP_WS(scan);
3883 if (*scan == '\0' || *scan == ',') {
3884 stride = +1;
3885 } else {
3886 KMP_ASSERT2(*scan == ':', "bad explicit places list");
3887 scan++; // skip ':'
3888
3889 // Read stride parameter
3890 sign = +1;
3891 for (;;) {
3892 SKIP_WS(scan);
3893 if (*scan == '+') {
3894 scan++; // skip '+'
3895 continue;
3896 }
3897 if (*scan == '-') {
3898 sign *= -1;
3899 scan++; // skip '-'
3900 continue;
3901 }
3902 break;
3903 }
3904 SKIP_WS(scan);
3905 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
3906 next = scan;
3907 SKIP_DIGITS(next);
3908 stride = __kmp_str_to_int(scan, *next);
3909 KMP_DEBUG_ASSERT(stride >= 0);
3910 scan = next;
3911 stride *= sign;
3912 }
3913
3914 // Add places determined by initial_place : count : stride
3915 for (i = 0; i < count; i++) {
3916 if (setSize == 0) {
3917 break;
3918 }
3919 // Add the current place, then build the next place (tempMask) from that
3920 KMP_CPU_COPY(previousMask, tempMask);
3921 ADD_MASK(previousMask);
3922 KMP_CPU_ZERO(tempMask);
3923 setSize = 0;
3924 KMP_CPU_SET_ITERATE(j, previousMask) {
3925 if (!KMP_CPU_ISSET(j, previousMask)) {
3926 continue;
3927 }
3928 if ((j + stride > maxOsId) || (j + stride < 0) ||
3929 (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) ||
3930 (!KMP_CPU_ISSET(j + stride,
3931 KMP_CPU_INDEX(osId2Mask, j + stride)))) {
3932 if (i < count - 1) {
3933 KMP_AFF_WARNING(AffIgnoreInvalidProcID, j + stride);
3934 }
3935 continue;
3936 }
3937 KMP_CPU_SET(j + stride, tempMask);
3938 setSize++;
3939 }
3940 }
3941 KMP_CPU_ZERO(tempMask);
3942 setSize = 0;
3943
3944 // valid follow sets are ',' and EOL
3945 SKIP_WS(scan);
3946 if (*scan == '\0') {
3947 break;
3948 }
3949 if (*scan == ',') {
3950 scan++; // skip ','
3951 continue;
3952 }
3953
3954 KMP_ASSERT2(0, "bad explicit places list");
3955 }
3956
3957 *out_numMasks = nextNewMask;
3958 if (nextNewMask == 0) {
3959 *out_masks = NULL;
3960 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3961 return;
3962 }
3963 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3964 KMP_CPU_FREE(tempMask);
3965 KMP_CPU_FREE(previousMask);
3966 for (i = 0; i < nextNewMask; i++) {
3967 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
3968 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
3969 KMP_CPU_COPY(dest, src);
3970 }
3971 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3972}
3973
3974#undef ADD_MASK
3975#undef ADD_MASK_OSID
3976
3977// This function figures out the deepest level at which there is at least one
3978// cluster/core with more than one processing unit bound to it.
3979static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) {
3980 int core_level = 0;
3981
3982 for (int i = 0; i < nprocs; i++) {
3983 const kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
3984 for (int j = bottom_level; j > 0; j--) {
3985 if (hw_thread.ids[j] > 0) {
3986 if (core_level < (j - 1)) {
3987 core_level = j - 1;
3988 }
3989 }
3990 }
3991 }
3992 return core_level;
3993}
3994
3995// This function counts number of clusters/cores at given level.
3996static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level,
3997 int core_level) {
3998 return __kmp_topology->get_count(core_level);
3999}
4000// This function finds to which cluster/core given processing unit is bound.
4001static int __kmp_affinity_find_core(int proc, int bottom_level,
4002 int core_level) {
4003 int core = 0;
4004 KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads());
4005 for (int i = 0; i <= proc; ++i) {
4006 if (i + 1 <= proc) {
4007 for (int j = 0; j <= core_level; ++j) {
4008 if (__kmp_topology->at(i + 1).sub_ids[j] !=
4009 __kmp_topology->at(i).sub_ids[j]) {
4010 core++;
4011 break;
4012 }
4013 }
4014 }
4015 }
4016 return core;
4017}
4018
4019// This function finds maximal number of processing units bound to a
4020// cluster/core at given level.
4021static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level,
4022 int core_level) {
4023 if (core_level >= bottom_level)
4024 return 1;
4025 int thread_level = __kmp_topology->get_level(KMP_HW_THREAD);
4026 return __kmp_topology->calculate_ratio(thread_level, core_level);
4027}
4028
4029static int *procarr = NULL;
4030static int __kmp_aff_depth = 0;
4031
4032// Create a one element mask array (set of places) which only contains the
4033// initial process's affinity mask
4034static void __kmp_create_affinity_none_places() {
4035 KMP_ASSERT(__kmp_affin_fullMask != NULL);
4036 KMP_ASSERT(__kmp_affinity_type == affinity_none);
4037 __kmp_affinity_num_masks = 1;
4038 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4039 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0);
4040 KMP_CPU_COPY(dest, __kmp_affin_fullMask);
4041}
4042
4043static void __kmp_aux_affinity_initialize(void) {
4044 if (__kmp_affinity_masks != NULL) {
4045 KMP_ASSERT(__kmp_affin_fullMask != NULL);
4046 return;
4047 }
4048
4049 // Create the "full" mask - this defines all of the processors that we
4050 // consider to be in the machine model. If respect is set, then it is the
4051 // initialization thread's affinity mask. Otherwise, it is all processors that
4052 // we know about on the machine.
4053 if (__kmp_affin_fullMask == NULL) {
4054 KMP_CPU_ALLOC(__kmp_affin_fullMask);
4055 }
4056 if (__kmp_affin_origMask == NULL) {
4057 KMP_CPU_ALLOC(__kmp_affin_origMask);
4058 }
4059 if (KMP_AFFINITY_CAPABLE()) {
4060 __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE);
4061 // Make a copy before possible expanding to the entire machine mask
4062 __kmp_affin_origMask->copy(__kmp_affin_fullMask);
4063 if (__kmp_affinity_respect_mask) {
4064 // Count the number of available processors.
4065 unsigned i;
4066 __kmp_avail_proc = 0;
4067 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
4068 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
4069 continue;
4070 }
4071 __kmp_avail_proc++;
4072 }
4073 if (__kmp_avail_proc > __kmp_xproc) {
4074 KMP_AFF_WARNING(ErrorInitializeAffinity);
4075 __kmp_affinity_type = affinity_none;
4076 KMP_AFFINITY_DISABLE();
4077 return;
4078 }
4079
4080 if (__kmp_affinity_verbose) {
4081 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4082 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4083 __kmp_affin_fullMask);
4084 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
4085 }
4086 } else {
4087 if (__kmp_affinity_verbose) {
4088 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4089 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4090 __kmp_affin_fullMask);
4091 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
4092 }
4093 __kmp_avail_proc =
4094 __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask);
4095#if KMP_OS_WINDOWS
4096 if (__kmp_num_proc_groups <= 1) {
4097 // Copy expanded full mask if topology has single processor group
4098 __kmp_affin_origMask->copy(__kmp_affin_fullMask);
4099 }
4100 // Set the process affinity mask since threads' affinity
4101 // masks must be subset of process mask in Windows* OS
4102 __kmp_affin_fullMask->set_process_affinity(true);
4103#endif
4104 }
4105 }
4106
4107 kmp_i18n_id_t msg_id = kmp_i18n_null;
4108
4109 // For backward compatibility, setting KMP_CPUINFO_FILE =>
4110 // KMP_TOPOLOGY_METHOD=cpuinfo
4111 if ((__kmp_cpuinfo_file != NULL) &&
4112 (__kmp_affinity_top_method == affinity_top_method_all)) {
4113 __kmp_affinity_top_method = affinity_top_method_cpuinfo;
4114 }
4115
4116 bool success = false;
4117 if (__kmp_affinity_top_method == affinity_top_method_all) {
4118// In the default code path, errors are not fatal - we just try using
4119// another method. We only emit a warning message if affinity is on, or the
4120// verbose flag is set, an the nowarnings flag was not set.
4121#if KMP_USE_HWLOC
4122 if (!success &&
4123 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
4124 if (!__kmp_hwloc_error) {
4125 success = __kmp_affinity_create_hwloc_map(&msg_id);
4126 if (!success && __kmp_affinity_verbose) {
4127 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
4128 }
4129 } else if (__kmp_affinity_verbose) {
4130 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
4131 }
4132 }
4133#endif
4134
4135#if KMP_ARCH_X86 || KMP_ARCH_X86_64
4136 if (!success) {
4137 success = __kmp_affinity_create_x2apicid_map(&msg_id);
4138 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
4139 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
4140 }
4141 }
4142 if (!success) {
4143 success = __kmp_affinity_create_apicid_map(&msg_id);
4144 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
4145 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
4146 }
4147 }
4148#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4149
4150#if KMP_OS_LINUX
4151 if (!success) {
4152 int line = 0;
4153 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
4154 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
4155 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
4156 }
4157 }
4158#endif /* KMP_OS_LINUX */
4159
4160#if KMP_GROUP_AFFINITY
4161 if (!success && (__kmp_num_proc_groups > 1)) {
4162 success = __kmp_affinity_create_proc_group_map(&msg_id);
4163 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
4164 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
4165 }
4166 }
4167#endif /* KMP_GROUP_AFFINITY */
4168
4169 if (!success) {
4170 success = __kmp_affinity_create_flat_map(&msg_id);
4171 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
4172 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
4173 }
4174 KMP_ASSERT(success);
4175 }
4176 }
4177
4178// If the user has specified that a paricular topology discovery method is to be
4179// used, then we abort if that method fails. The exception is group affinity,
4180// which might have been implicitly set.
4181#if KMP_USE_HWLOC
4182 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
4183 KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC);
4184 success = __kmp_affinity_create_hwloc_map(&msg_id);
4185 if (!success) {
4186 KMP_ASSERT(msg_id != kmp_i18n_null);
4187 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4188 }
4189 }
4190#endif // KMP_USE_HWLOC
4191
4192#if KMP_ARCH_X86 || KMP_ARCH_X86_64
4193 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid ||
4194 __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
4195 success = __kmp_affinity_create_x2apicid_map(&msg_id);
4196 if (!success) {
4197 KMP_ASSERT(msg_id != kmp_i18n_null);
4198 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4199 }
4200 } else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
4201 success = __kmp_affinity_create_apicid_map(&msg_id);
4202 if (!success) {
4203 KMP_ASSERT(msg_id != kmp_i18n_null);
4204 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4205 }
4206 }
4207#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4208
4209 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
4210 int line = 0;
4211 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
4212 if (!success) {
4213 KMP_ASSERT(msg_id != kmp_i18n_null);
4214 const char *filename = __kmp_cpuinfo_get_filename();
4215 if (line > 0) {
4216 KMP_FATAL(FileLineMsgExiting, filename, line,
4217 __kmp_i18n_catgets(msg_id));
4218 } else {
4219 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
4220 }
4221 }
4222 }
4223
4224#if KMP_GROUP_AFFINITY
4225 else if (__kmp_affinity_top_method == affinity_top_method_group) {
4226 success = __kmp_affinity_create_proc_group_map(&msg_id);
4227 KMP_ASSERT(success);
4228 if (!success) {
4229 KMP_ASSERT(msg_id != kmp_i18n_null);
4230 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4231 }
4232 }
4233#endif /* KMP_GROUP_AFFINITY */
4234
4235 else if (__kmp_affinity_top_method == affinity_top_method_flat) {
4236 success = __kmp_affinity_create_flat_map(&msg_id);
4237 // should not fail
4238 KMP_ASSERT(success);
4239 }
4240
4241 // Early exit if topology could not be created
4242 if (!__kmp_topology) {
4243 if (KMP_AFFINITY_CAPABLE()) {
4244 KMP_AFF_WARNING(ErrorInitializeAffinity);
4245 }
4246 if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 &&
4247 __kmp_ncores > 0) {
4248 __kmp_topology = kmp_topology_t::allocate(0, 0, NULL);
4249 __kmp_topology->canonicalize(nPackages, nCoresPerPkg,
4250 __kmp_nThreadsPerCore, __kmp_ncores);
4251 if (__kmp_affinity_verbose) {
4252 __kmp_topology->print("KMP_AFFINITY");
4253 }
4254 }
4255 __kmp_affinity_type = affinity_none;
4256 __kmp_create_affinity_none_places();
4257#if KMP_USE_HIER_SCHED
4258 __kmp_dispatch_set_hierarchy_values();
4259#endif
4260 KMP_AFFINITY_DISABLE();
4261 return;
4262 }
4263
4264 // Canonicalize, print (if requested), apply KMP_HW_SUBSET, and
4265 // initialize other data structures which depend on the topology
4266 __kmp_topology->canonicalize();
4267 if (__kmp_affinity_verbose)
4268 __kmp_topology->print("KMP_AFFINITY");
4269 bool filtered = __kmp_topology->filter_hw_subset();
4270 if (filtered) {
4271#if KMP_OS_WINDOWS
4272 // Copy filtered full mask if topology has single processor group
4273 if (__kmp_num_proc_groups <= 1)
4274#endif
4275 __kmp_affin_origMask->copy(__kmp_affin_fullMask);
4276 }
4277 if (filtered && __kmp_affinity_verbose)
4278 __kmp_topology->print("KMP_HW_SUBSET");
4279 machine_hierarchy.init(__kmp_topology->get_num_hw_threads());
4280 KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads());
4281 // If KMP_AFFINITY=none, then only create the single "none" place
4282 // which is the process's initial affinity mask or the number of
4283 // hardware threads depending on respect,norespect
4284 if (__kmp_affinity_type == affinity_none) {
4285 __kmp_create_affinity_none_places();
4286#if KMP_USE_HIER_SCHED
4287 __kmp_dispatch_set_hierarchy_values();
4288#endif
4289 return;
4290 }
4291 int depth = __kmp_topology->get_depth();
4292
4293 // Create the table of masks, indexed by thread Id.
4294 unsigned maxIndex;
4295 unsigned numUnique;
4296 kmp_affin_mask_t *osId2Mask = __kmp_create_masks(&maxIndex, &numUnique);
4297 if (__kmp_affinity_gran_levels == 0) {
4298 KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
4299 }
4300
4301 switch (__kmp_affinity_type) {
4302
4303 case affinity_explicit:
4304 KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL);
4305 if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) {
4306 __kmp_affinity_process_proclist(
4307 &__kmp_affinity_masks, &__kmp_affinity_num_masks,
4308 __kmp_affinity_proclist, osId2Mask, maxIndex);
4309 } else {
4310 __kmp_affinity_process_placelist(
4311 &__kmp_affinity_masks, &__kmp_affinity_num_masks,
4312 __kmp_affinity_proclist, osId2Mask, maxIndex);
4313 }
4314 if (__kmp_affinity_num_masks == 0) {
4315 KMP_AFF_WARNING(AffNoValidProcID);
4316 __kmp_affinity_type = affinity_none;
4317 __kmp_create_affinity_none_places();
4318 return;
4319 }
4320 break;
4321
4322 // The other affinity types rely on sorting the hardware threads according to
4323 // some permutation of the machine topology tree. Set __kmp_affinity_compact
4324 // and __kmp_affinity_offset appropriately, then jump to a common code
4325 // fragment to do the sort and create the array of affinity masks.
4326 case affinity_logical:
4327 __kmp_affinity_compact = 0;
4328 if (__kmp_affinity_offset) {
4329 __kmp_affinity_offset =
4330 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
4331 }
4332 goto sortTopology;
4333
4334 case affinity_physical:
4335 if (__kmp_nThreadsPerCore > 1) {
4336 __kmp_affinity_compact = 1;
4337 if (__kmp_affinity_compact >= depth) {
4338 __kmp_affinity_compact = 0;
4339 }
4340 } else {
4341 __kmp_affinity_compact = 0;
4342 }
4343 if (__kmp_affinity_offset) {
4344 __kmp_affinity_offset =
4345 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
4346 }
4347 goto sortTopology;
4348
4349 case affinity_scatter:
4350 if (__kmp_affinity_compact >= depth) {
4351 __kmp_affinity_compact = 0;
4352 } else {
4353 __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact;
4354 }
4355 goto sortTopology;
4356
4357 case affinity_compact:
4358 if (__kmp_affinity_compact >= depth) {
4359 __kmp_affinity_compact = depth - 1;
4360 }
4361 goto sortTopology;
4362
4363 case affinity_balanced:
4364 if (depth <= 1) {
4365 KMP_AFF_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
4366 __kmp_affinity_type = affinity_none;
4367 __kmp_create_affinity_none_places();
4368 return;
4369 } else if (!__kmp_topology->is_uniform()) {
4370 // Save the depth for further usage
4371 __kmp_aff_depth = depth;
4372
4373 int core_level =
4374 __kmp_affinity_find_core_level(__kmp_avail_proc, depth - 1);
4375 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, depth - 1,
4376 core_level);
4377 int maxprocpercore = __kmp_affinity_max_proc_per_core(
4378 __kmp_avail_proc, depth - 1, core_level);
4379
4380 int nproc = ncores * maxprocpercore;
4381 if ((nproc < 2) || (nproc < __kmp_avail_proc)) {
4382 KMP_AFF_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
4383 __kmp_affinity_type = affinity_none;
4384 return;
4385 }
4386
4387 procarr = (int *)__kmp_allocate(sizeof(int) * nproc);
4388 for (int i = 0; i < nproc; i++) {
4389 procarr[i] = -1;
4390 }
4391
4392 int lastcore = -1;
4393 int inlastcore = 0;
4394 for (int i = 0; i < __kmp_avail_proc; i++) {
4395 int proc = __kmp_topology->at(i).os_id;
4396 int core = __kmp_affinity_find_core(i, depth - 1, core_level);
4397
4398 if (core == lastcore) {
4399 inlastcore++;
4400 } else {
4401 inlastcore = 0;
4402 }
4403 lastcore = core;
4404
4405 procarr[core * maxprocpercore + inlastcore] = proc;
4406 }
4407 }
4408 if (__kmp_affinity_compact >= depth) {
4409 __kmp_affinity_compact = depth - 1;
4410 }
4411
4412 sortTopology:
4413 // Allocate the gtid->affinity mask table.
4414 if (__kmp_affinity_dups) {
4415 __kmp_affinity_num_masks = __kmp_avail_proc;
4416 } else {
4417 __kmp_affinity_num_masks = numUnique;
4418 }
4419
4420 if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) &&
4421 (__kmp_affinity_num_places > 0) &&
4422 ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) {
4423 __kmp_affinity_num_masks = __kmp_affinity_num_places;
4424 }
4425
4426 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4427
4428 // Sort the topology table according to the current setting of
4429 // __kmp_affinity_compact, then fill out __kmp_affinity_masks.
4430 __kmp_topology->sort_compact();
4431 {
4432 int i;
4433 unsigned j;
4434 int num_hw_threads = __kmp_topology->get_num_hw_threads();
4435 for (i = 0, j = 0; i < num_hw_threads; i++) {
4436 if ((!__kmp_affinity_dups) && (!__kmp_topology->at(i).leader)) {
4437 continue;
4438 }
4439 int osId = __kmp_topology->at(i).os_id;
4440
4441 kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId);
4442 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j);
4443 KMP_ASSERT(KMP_CPU_ISSET(osId, src));
4444 KMP_CPU_COPY(dest, src);
4445 if (++j >= __kmp_affinity_num_masks) {
4446 break;
4447 }
4448 }
4449 KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks);
4450 }
4451 // Sort the topology back using ids
4452 __kmp_topology->sort_ids();
4453 break;
4454
4455 default:
4456 KMP_ASSERT2(0, "Unexpected affinity setting");
4457 }
4458
4459 KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1);
4460}
4461
4462void __kmp_affinity_initialize(void) {
4463 // Much of the code above was written assuming that if a machine was not
4464 // affinity capable, then __kmp_affinity_type == affinity_none. We now
4465 // explicitly represent this as __kmp_affinity_type == affinity_disabled.
4466 // There are too many checks for __kmp_affinity_type == affinity_none
4467 // in this code. Instead of trying to change them all, check if
4468 // __kmp_affinity_type == affinity_disabled, and if so, slam it with
4469 // affinity_none, call the real initialization routine, then restore
4470 // __kmp_affinity_type to affinity_disabled.
4471 int disabled = (__kmp_affinity_type == affinity_disabled);
4472 if (!KMP_AFFINITY_CAPABLE()) {
4473 KMP_ASSERT(disabled);
4474 }
4475 if (disabled) {
4476 __kmp_affinity_type = affinity_none;
4477 }
4478 __kmp_aux_affinity_initialize();
4479 if (disabled) {
4480 __kmp_affinity_type = affinity_disabled;
4481 }
4482}
4483
4484void __kmp_affinity_uninitialize(void) {
4485 if (__kmp_affinity_masks != NULL) {
4486 KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4487 __kmp_affinity_masks = NULL;
4488 }
4489 if (__kmp_affin_fullMask != NULL) {
4490 KMP_CPU_FREE(__kmp_affin_fullMask);
4491 __kmp_affin_fullMask = NULL;
4492 }
4493 if (__kmp_affin_origMask != NULL) {
4494 KMP_CPU_FREE(__kmp_affin_origMask);
4495 __kmp_affin_origMask = NULL;
4496 }
4497 __kmp_affinity_num_masks = 0;
4498 __kmp_affinity_type = affinity_default;
4499 __kmp_affinity_num_places = 0;
4500 if (__kmp_affinity_proclist != NULL) {
4501 __kmp_free(__kmp_affinity_proclist);
4502 __kmp_affinity_proclist = NULL;
4503 }
4504 if (procarr != NULL) {
4505 __kmp_free(procarr);
4506 procarr = NULL;
4507 }
4508#if KMP_USE_HWLOC
4509 if (__kmp_hwloc_topology != NULL) {
4510 hwloc_topology_destroy(__kmp_hwloc_topology);
4511 __kmp_hwloc_topology = NULL;
4512 }
4513#endif
4514 if (__kmp_hw_subset) {
4515 kmp_hw_subset_t::deallocate(__kmp_hw_subset);
4516 __kmp_hw_subset = nullptr;
4517 }
4518 if (__kmp_topology) {
4519 kmp_topology_t::deallocate(__kmp_topology);
4520 __kmp_topology = nullptr;
4521 }
4522 KMPAffinity::destroy_api();
4523}
4524
4525void __kmp_affinity_set_init_mask(int gtid, int isa_root) {
4526 if (!KMP_AFFINITY_CAPABLE()) {
4527 return;
4528 }
4529
4530 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4531 if (th->th.th_affin_mask == NULL) {
4532 KMP_CPU_ALLOC(th->th.th_affin_mask);
4533 } else {
4534 KMP_CPU_ZERO(th->th.th_affin_mask);
4535 }
4536
4537 // Copy the thread mask to the kmp_info_t structure. If
4538 // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that
4539 // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set,
4540 // then the full mask is the same as the mask of the initialization thread.
4541 kmp_affin_mask_t *mask;
4542 int i;
4543
4544 if (KMP_AFFINITY_NON_PROC_BIND) {
4545 if ((__kmp_affinity_type == affinity_none) ||
4546 (__kmp_affinity_type == affinity_balanced) ||
4547 KMP_HIDDEN_HELPER_THREAD(gtid)) {
4548#if KMP_GROUP_AFFINITY
4549 if (__kmp_num_proc_groups > 1) {
4550 return;
4551 }
4552#endif
4553 KMP_ASSERT(__kmp_affin_fullMask != NULL);
4554 i = 0;
4555 mask = __kmp_affin_fullMask;
4556 } else {
4557 int mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid);
4558 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
4559 i = (mask_idx + __kmp_affinity_offset) % __kmp_affinity_num_masks;
4560 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
4561 }
4562 } else {
4563 if ((!isa_root) || KMP_HIDDEN_HELPER_THREAD(gtid) ||
4564 (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) {
4565#if KMP_GROUP_AFFINITY
4566 if (__kmp_num_proc_groups > 1) {
4567 return;
4568 }
4569#endif
4570 KMP_ASSERT(__kmp_affin_fullMask != NULL);
4571 i = KMP_PLACE_ALL;
4572 mask = __kmp_affin_fullMask;
4573 } else {
4574 // int i = some hash function or just a counter that doesn't
4575 // always start at 0. Use adjusted gtid for now.
4576 int mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid);
4577 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
4578 i = (mask_idx + __kmp_affinity_offset) % __kmp_affinity_num_masks;
4579 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
4580 }
4581 }
4582
4583 th->th.th_current_place = i;
4584 if (isa_root || KMP_HIDDEN_HELPER_THREAD(gtid)) {
4585 th->th.th_new_place = i;
4586 th->th.th_first_place = 0;
4587 th->th.th_last_place = __kmp_affinity_num_masks - 1;
4588 } else if (KMP_AFFINITY_NON_PROC_BIND) {
4589 // When using a Non-OMP_PROC_BIND affinity method,
4590 // set all threads' place-partition-var to the entire place list
4591 th->th.th_first_place = 0;
4592 th->th.th_last_place = __kmp_affinity_num_masks - 1;
4593 }
4594
4595 if (i == KMP_PLACE_ALL) {
4596 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n",
4597 gtid));
4598 } else {
4599 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n",
4600 gtid, i));
4601 }
4602
4603 KMP_CPU_COPY(th->th.th_affin_mask, mask);
4604
4605 if (__kmp_affinity_verbose && !KMP_HIDDEN_HELPER_THREAD(gtid)
4606 /* to avoid duplicate printing (will be correctly printed on barrier) */
4607 && (__kmp_affinity_type == affinity_none ||
4608 (i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) {
4609 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4610 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4611 th->th.th_affin_mask);
4612 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
4613 __kmp_gettid(), gtid, buf);
4614 }
4615
4616#if KMP_DEBUG
4617 // Hidden helper thread affinity only printed for debug builds
4618 if (__kmp_affinity_verbose && KMP_HIDDEN_HELPER_THREAD(gtid)) {
4619 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4620 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4621 th->th.th_affin_mask);
4622 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY (hidden helper thread)",
4623 (kmp_int32)getpid(), __kmp_gettid(), gtid, buf);
4624 }
4625#endif
4626
4627#if KMP_OS_WINDOWS
4628 // On Windows* OS, the process affinity mask might have changed. If the user
4629 // didn't request affinity and this call fails, just continue silently.
4630 // See CQ171393.
4631 if (__kmp_affinity_type == affinity_none) {
4632 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
4633 } else
4634#endif
4635 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4636}
4637
4638void __kmp_affinity_set_place(int gtid) {
4639 if (!KMP_AFFINITY_CAPABLE()) {
4640 return;
4641 }
4642
4643 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4644
4645 KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current "
4646 "place = %d)\n",
4647 gtid, th->th.th_new_place, th->th.th_current_place));
4648
4649 // Check that the new place is within this thread's partition.
4650 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4651 KMP_ASSERT(th->th.th_new_place >= 0);
4652 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks);
4653 if (th->th.th_first_place <= th->th.th_last_place) {
4654 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) &&
4655 (th->th.th_new_place <= th->th.th_last_place));
4656 } else {
4657 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) ||
4658 (th->th.th_new_place >= th->th.th_last_place));
4659 }
4660
4661 // Copy the thread mask to the kmp_info_t structure,
4662 // and set this thread's affinity.
4663 kmp_affin_mask_t *mask =
4664 KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place);
4665 KMP_CPU_COPY(th->th.th_affin_mask, mask);
4666 th->th.th_current_place = th->th.th_new_place;
4667
4668 if (__kmp_affinity_verbose) {
4669 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4670 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4671 th->th.th_affin_mask);
4672 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
4673 __kmp_gettid(), gtid, buf);
4674 }
4675 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4676}
4677
4678int __kmp_aux_set_affinity(void **mask) {
4679 int gtid;
4680 kmp_info_t *th;
4681 int retval;
4682
4683 if (!KMP_AFFINITY_CAPABLE()) {
4684 return -1;
4685 }
4686
4687 gtid = __kmp_entry_gtid();
4688 KA_TRACE(
4689 1000, (""); {
4690 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4691 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4692 (kmp_affin_mask_t *)(*mask));
4693 __kmp_debug_printf(
4694 "kmp_set_affinity: setting affinity mask for thread %d = %s\n",
4695 gtid, buf);
4696 });
4697
4698 if (__kmp_env_consistency_check) {
4699 if ((mask == NULL) || (*mask == NULL)) {
4700 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4701 } else {
4702 unsigned proc;
4703 int num_procs = 0;
4704
4705 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) {
4706 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4707 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4708 }
4709 if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
4710 continue;
4711 }
4712 num_procs++;
4713 }
4714 if (num_procs == 0) {
4715 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4716 }
4717
4718#if KMP_GROUP_AFFINITY
4719 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
4720 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4721 }
4722#endif /* KMP_GROUP_AFFINITY */
4723 }
4724 }
4725
4726 th = __kmp_threads[gtid];
4727 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4728 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4729 if (retval == 0) {
4730 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
4731 }
4732
4733 th->th.th_current_place = KMP_PLACE_UNDEFINED;
4734 th->th.th_new_place = KMP_PLACE_UNDEFINED;
4735 th->th.th_first_place = 0;
4736 th->th.th_last_place = __kmp_affinity_num_masks - 1;
4737
4738 // Turn off 4.0 affinity for the current tread at this parallel level.
4739 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
4740
4741 return retval;
4742}
4743
4744int __kmp_aux_get_affinity(void **mask) {
4745 int gtid;
4746 int retval;
4747#if KMP_OS_WINDOWS || KMP_DEBUG
4748 kmp_info_t *th;
4749#endif
4750 if (!KMP_AFFINITY_CAPABLE()) {
4751 return -1;
4752 }
4753
4754 gtid = __kmp_entry_gtid();
4755#if KMP_OS_WINDOWS || KMP_DEBUG
4756 th = __kmp_threads[gtid];
4757#else
4758 (void)gtid; // unused variable
4759#endif
4760 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4761
4762 KA_TRACE(
4763 1000, (""); {
4764 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4765 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4766 th->th.th_affin_mask);
4767 __kmp_printf(
4768 "kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid,
4769 buf);
4770 });
4771
4772 if (__kmp_env_consistency_check) {
4773 if ((mask == NULL) || (*mask == NULL)) {
4774 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
4775 }
4776 }
4777
4778#if !KMP_OS_WINDOWS
4779
4780 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4781 KA_TRACE(
4782 1000, (""); {
4783 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4784 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4785 (kmp_affin_mask_t *)(*mask));
4786 __kmp_printf(
4787 "kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid,
4788 buf);
4789 });
4790 return retval;
4791
4792#else
4793 (void)retval;
4794
4795 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
4796 return 0;
4797
4798#endif /* KMP_OS_WINDOWS */
4799}
4800
4801int __kmp_aux_get_affinity_max_proc() {
4802 if (!KMP_AFFINITY_CAPABLE()) {
4803 return 0;
4804 }
4805#if KMP_GROUP_AFFINITY
4806 if (__kmp_num_proc_groups > 1) {
4807 return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT);
4808 }
4809#endif
4810 return __kmp_xproc;
4811}
4812
4813int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) {
4814 if (!KMP_AFFINITY_CAPABLE()) {
4815 return -1;
4816 }
4817
4818 KA_TRACE(
4819 1000, (""); {
4820 int gtid = __kmp_entry_gtid();
4821 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4822 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4823 (kmp_affin_mask_t *)(*mask));
4824 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in "
4825 "affinity mask for thread %d = %s\n",
4826 proc, gtid, buf);
4827 });
4828
4829 if (__kmp_env_consistency_check) {
4830 if ((mask == NULL) || (*mask == NULL)) {
4831 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
4832 }
4833 }
4834
4835 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
4836 return -1;
4837 }
4838 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4839 return -2;
4840 }
4841
4842 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
4843 return 0;
4844}
4845
4846int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) {
4847 if (!KMP_AFFINITY_CAPABLE()) {
4848 return -1;
4849 }
4850
4851 KA_TRACE(
4852 1000, (""); {
4853 int gtid = __kmp_entry_gtid();
4854 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4855 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4856 (kmp_affin_mask_t *)(*mask));
4857 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in "
4858 "affinity mask for thread %d = %s\n",
4859 proc, gtid, buf);
4860 });
4861
4862 if (__kmp_env_consistency_check) {
4863 if ((mask == NULL) || (*mask == NULL)) {
4864 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
4865 }
4866 }
4867
4868 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
4869 return -1;
4870 }
4871 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4872 return -2;
4873 }
4874
4875 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
4876 return 0;
4877}
4878
4879int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) {
4880 if (!KMP_AFFINITY_CAPABLE()) {
4881 return -1;
4882 }
4883
4884 KA_TRACE(
4885 1000, (""); {
4886 int gtid = __kmp_entry_gtid();
4887 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4888 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4889 (kmp_affin_mask_t *)(*mask));
4890 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in "
4891 "affinity mask for thread %d = %s\n",
4892 proc, gtid, buf);
4893 });
4894
4895 if (__kmp_env_consistency_check) {
4896 if ((mask == NULL) || (*mask == NULL)) {
4897 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
4898 }
4899 }
4900
4901 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
4902 return -1;
4903 }
4904 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4905 return 0;
4906 }
4907
4908 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
4909}
4910
4911// Dynamic affinity settings - Affinity balanced
4912void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) {
4913 KMP_DEBUG_ASSERT(th);
4914 bool fine_gran = true;
4915 int tid = th->th.th_info.ds.ds_tid;
4916
4917 // Do not perform balanced affinity for the hidden helper threads
4918 if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th)))
4919 return;
4920
4921 switch (__kmp_affinity_gran) {
4922 case KMP_HW_THREAD:
4923 break;
4924 case KMP_HW_CORE:
4925 if (__kmp_nThreadsPerCore > 1) {
4926 fine_gran = false;
4927 }
4928 break;
4929 case KMP_HW_SOCKET:
4930 if (nCoresPerPkg > 1) {
4931 fine_gran = false;
4932 }
4933 break;
4934 default:
4935 fine_gran = false;
4936 }
4937
4938 if (__kmp_topology->is_uniform()) {
4939 int coreID;
4940 int threadID;
4941 // Number of hyper threads per core in HT machine
4942 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
4943 // Number of cores
4944 int ncores = __kmp_ncores;
4945 if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) {
4946 __kmp_nth_per_core = __kmp_avail_proc / nPackages;
4947 ncores = nPackages;
4948 }
4949 // How many threads will be bound to each core
4950 int chunk = nthreads / ncores;
4951 // How many cores will have an additional thread bound to it - "big cores"
4952 int big_cores = nthreads % ncores;
4953 // Number of threads on the big cores
4954 int big_nth = (chunk + 1) * big_cores;
4955 if (tid < big_nth) {
4956 coreID = tid / (chunk + 1);
4957 threadID = (tid % (chunk + 1)) % __kmp_nth_per_core;
4958 } else { // tid >= big_nth
4959 coreID = (tid - big_cores) / chunk;
4960 threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core;
4961 }
4962 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
4963 "Illegal set affinity operation when not capable");
4964
4965 kmp_affin_mask_t *mask = th->th.th_affin_mask;
4966 KMP_CPU_ZERO(mask);
4967
4968 if (fine_gran) {
4969 int osID =
4970 __kmp_topology->at(coreID * __kmp_nth_per_core + threadID).os_id;
4971 KMP_CPU_SET(osID, mask);
4972 } else {
4973 for (int i = 0; i < __kmp_nth_per_core; i++) {
4974 int osID;
4975 osID = __kmp_topology->at(coreID * __kmp_nth_per_core + i).os_id;
4976 KMP_CPU_SET(osID, mask);
4977 }
4978 }
4979 if (__kmp_affinity_verbose) {
4980 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4981 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
4982 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
4983 __kmp_gettid(), tid, buf);
4984 }
4985 __kmp_set_system_affinity(mask, TRUE);
4986 } else { // Non-uniform topology
4987
4988 kmp_affin_mask_t *mask = th->th.th_affin_mask;
4989 KMP_CPU_ZERO(mask);
4990
4991 int core_level =
4992 __kmp_affinity_find_core_level(__kmp_avail_proc, __kmp_aff_depth - 1);
4993 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc,
4994 __kmp_aff_depth - 1, core_level);
4995 int nth_per_core = __kmp_affinity_max_proc_per_core(
4996 __kmp_avail_proc, __kmp_aff_depth - 1, core_level);
4997
4998 // For performance gain consider the special case nthreads ==
4999 // __kmp_avail_proc
5000 if (nthreads == __kmp_avail_proc) {
5001 if (fine_gran) {
5002 int osID = __kmp_topology->at(tid).os_id;
5003 KMP_CPU_SET(osID, mask);
5004 } else {
5005 int core =
5006 __kmp_affinity_find_core(tid, __kmp_aff_depth - 1, core_level);
5007 for (int i = 0; i < __kmp_avail_proc; i++) {
5008 int osID = __kmp_topology->at(i).os_id;
5009 if (__kmp_affinity_find_core(i, __kmp_aff_depth - 1, core_level) ==
5010 core) {
5011 KMP_CPU_SET(osID, mask);
5012 }
5013 }
5014 }
5015 } else if (nthreads <= ncores) {
5016
5017 int core = 0;
5018 for (int i = 0; i < ncores; i++) {
5019 // Check if this core from procarr[] is in the mask
5020 int in_mask = 0;
5021 for (int j = 0; j < nth_per_core; j++) {
5022 if (procarr[i * nth_per_core + j] != -1) {
5023 in_mask = 1;
5024 break;
5025 }
5026 }
5027 if (in_mask) {
5028 if (tid == core) {
5029 for (int j = 0; j < nth_per_core; j++) {
5030 int osID = procarr[i * nth_per_core + j];
5031 if (osID != -1) {
5032 KMP_CPU_SET(osID, mask);
5033 // For fine granularity it is enough to set the first available
5034 // osID for this core
5035 if (fine_gran) {
5036 break;
5037 }
5038 }
5039 }
5040 break;
5041 } else {
5042 core++;
5043 }
5044 }
5045 }
5046 } else { // nthreads > ncores
5047 // Array to save the number of processors at each core
5048 int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores);
5049 // Array to save the number of cores with "x" available processors;
5050 int *ncores_with_x_procs =
5051 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5052 // Array to save the number of cores with # procs from x to nth_per_core
5053 int *ncores_with_x_to_max_procs =
5054 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5055
5056 for (int i = 0; i <= nth_per_core; i++) {
5057 ncores_with_x_procs[i] = 0;
5058 ncores_with_x_to_max_procs[i] = 0;
5059 }
5060
5061 for (int i = 0; i < ncores; i++) {
5062 int cnt = 0;
5063 for (int j = 0; j < nth_per_core; j++) {
5064 if (procarr[i * nth_per_core + j] != -1) {
5065 cnt++;
5066 }
5067 }
5068 nproc_at_core[i] = cnt;
5069 ncores_with_x_procs[cnt]++;
5070 }
5071
5072 for (int i = 0; i <= nth_per_core; i++) {
5073 for (int j = i; j <= nth_per_core; j++) {
5074 ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j];
5075 }
5076 }
5077
5078 // Max number of processors
5079 int nproc = nth_per_core * ncores;
5080 // An array to keep number of threads per each context
5081 int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc);
5082 for (int i = 0; i < nproc; i++) {
5083 newarr[i] = 0;
5084 }
5085
5086 int nth = nthreads;
5087 int flag = 0;
5088 while (nth > 0) {
5089 for (int j = 1; j <= nth_per_core; j++) {
5090 int cnt = ncores_with_x_to_max_procs[j];
5091 for (int i = 0; i < ncores; i++) {
5092 // Skip the core with 0 processors
5093 if (nproc_at_core[i] == 0) {
5094 continue;
5095 }
5096 for (int k = 0; k < nth_per_core; k++) {
5097 if (procarr[i * nth_per_core + k] != -1) {
5098 if (newarr[i * nth_per_core + k] == 0) {
5099 newarr[i * nth_per_core + k] = 1;
5100 cnt--;
5101 nth--;
5102 break;
5103 } else {
5104 if (flag != 0) {
5105 newarr[i * nth_per_core + k]++;
5106 cnt--;
5107 nth--;
5108 break;
5109 }
5110 }
5111 }
5112 }
5113 if (cnt == 0 || nth == 0) {
5114 break;
5115 }
5116 }
5117 if (nth == 0) {
5118 break;
5119 }
5120 }
5121 flag = 1;
5122 }
5123 int sum = 0;
5124 for (int i = 0; i < nproc; i++) {
5125 sum += newarr[i];
5126 if (sum > tid) {
5127 if (fine_gran) {
5128 int osID = procarr[i];
5129 KMP_CPU_SET(osID, mask);
5130 } else {
5131 int coreID = i / nth_per_core;
5132 for (int ii = 0; ii < nth_per_core; ii++) {
5133 int osID = procarr[coreID * nth_per_core + ii];
5134 if (osID != -1) {
5135 KMP_CPU_SET(osID, mask);
5136 }
5137 }
5138 }
5139 break;
5140 }
5141 }
5142 __kmp_free(newarr);
5143 }
5144
5145 if (__kmp_affinity_verbose) {
5146 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5147 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
5148 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
5149 __kmp_gettid(), tid, buf);
5150 }
5151 __kmp_set_system_affinity(mask, TRUE);
5152 }
5153}
5154
5155#if KMP_OS_LINUX || KMP_OS_FREEBSD
5156// We don't need this entry for Windows because
5157// there is GetProcessAffinityMask() api
5158//
5159// The intended usage is indicated by these steps:
5160// 1) The user gets the current affinity mask
5161// 2) Then sets the affinity by calling this function
5162// 3) Error check the return value
5163// 4) Use non-OpenMP parallelization
5164// 5) Reset the affinity to what was stored in step 1)
5165#ifdef __cplusplus
5166extern "C"
5167#endif
5168 int
5169 kmp_set_thread_affinity_mask_initial()
5170// the function returns 0 on success,
5171// -1 if we cannot bind thread
5172// >0 (errno) if an error happened during binding
5173{
5174 int gtid = __kmp_get_gtid();
5175 if (gtid < 0) {
5176 // Do not touch non-omp threads
5177 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5178 "non-omp thread, returning\n"));
5179 return -1;
5180 }
5181 if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) {
5182 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5183 "affinity not initialized, returning\n"));
5184 return -1;
5185 }
5186 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5187 "set full mask for thread %d\n",
5188 gtid));
5189 KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL);
5190 return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE);
5191}
5192#endif
5193
5194#endif // KMP_AFFINITY_SUPPORTED
int try_open(const char *filename, const char *mode)
Definition: kmp.h:4381