1#ifndef SimTK_SIMMATRIX_SMALLMATRIX_ROW_H_
2#define SimTK_SIMMATRIX_SMALLMATRIX_ROW_H_
44template <
class E1,
int S1,
class E2,
int S2>
void
47 result[0] = r1[0] + r2[0];
49template <
int N,
class E1,
int S1,
class E2,
int S2>
void
53 reinterpret_cast<const Row<N-1,E2,S2
>&>(r2),
55 template Result<E2>::Add
>&>(result));
56 result[N-1] = r1[N-1] + r2[N-1];
59template <
class E1,
int S1,
class E2,
int S2>
void
62 result[0] = r1[0] - r2[0];
64template <
int N,
class E1,
int S1,
class E2,
int S2>
void
68 reinterpret_cast<const Row<N-1,E2,S2
>&>(r2),
70 template Result<E2>::Sub
>&>(result));
71 result[N-1] = r1[N-1] - r2[N-1];
74template <
class E1,
int S1,
class E2,
int S2>
void
77 result[0] = r1[0] * r2[0];
79template <
int N,
class E1,
int S1,
class E2,
int S2>
void
83 reinterpret_cast<const Row<N-1,E2,S2
>&>(r2),
85 template Result<E2>::Mul
>&>(result));
86 result[N-1] = r1[N-1] * r2[N-1];
89template <
class E1,
int S1,
class E2,
int S2>
void
92 result[0] = r1[0] / r2[0];
94template <
int N,
class E1,
int S1,
class E2,
int S2>
void
98 reinterpret_cast<const Row<N-1,E2,S2
>&>(r2),
100 template Result<E2>::Dvd
>&>(result));
101 result[N-1] = r1[N-1] / r2[N-1];
104template <
class E1,
int S1,
class E2,
int S2>
void
108template <
int N,
class E1,
int S1,
class E2,
int S2>
void
110 copy(
reinterpret_cast<Row<N-1,E1,S1
>&>(r1),
111 reinterpret_cast<const Row<N-1,E2,S2
>&>(r2));
132template <
int N,
class ELT,
int STRIDE>
class Row {
216 static int size() {
return N; }
217 static int nrow() {
return 1; }
218 static int ncol() {
return N; }
224 for(
int i=0;i<N;++i) sum += CNT<E>::scalarNormSqr(d[i*STRIDE]);
233 for(
int i=0;i<N;++i) rsqrt[i] = CNT<E>::sqrt(d[i*STRIDE]);
248 for(
int i=0;i<N;++i) rstd[i] = CNT<E>::standardize(d[i*STRIDE]);
256 for (
int i=0;i<N;++i)
sum += d[i*STRIDE];
276 typedef typename MulOp::Type
Mul;
281 typedef typename MulOpNonConforming::Type
MulNon;
287 typedef typename DvdOp::Type
Dvd;
292 typedef typename AddOp::Type
Add;
297 typedef typename SubOp::Type
Sub;
344 {
for (
int i=0;i<N;++i) d[i*STRIDE]=e; }
347 explicit Row(
const ENeg& ne)
348 {
for (
int i=0;i<N;++i) d[i*STRIDE]=ne; }
356 Row(
const E& e0,
const E& e1)
357 { assert(N==2);(*this)[0]=e0;(*this)[1]=e1; }
358 Row(
const E& e0,
const E& e1,
const E& e2)
359 { assert(N==3);(*this)[0]=e0;(*this)[1]=e1;(*this)[2]=e2; }
360 Row(
const E& e0,
const E& e1,
const E& e2,
const E& e3)
361 { assert(N==4);(*this)[0]=e0;(*this)[1]=e1;(*this)[2]=e2;(*this)[3]=e3; }
362 Row(
const E& e0,
const E& e1,
const E& e2,
const E& e3,
const E& e4)
363 { assert(N==5);(*this)[0]=e0;(*this)[1]=e1;(*this)[2]=e2;
364 (*this)[3]=e3;(*this)[4]=e4; }
365 Row(
const E& e0,
const E& e1,
const E& e2,
const E& e3,
const E& e4,
const E& e5)
366 { assert(N==6);(*this)[0]=e0;(*this)[1]=e1;(*this)[2]=e2;
367 (*this)[3]=e3;(*this)[4]=e4;(*this)[5]=e5; }
368 Row(
const E& e0,
const E& e1,
const E& e2,
const E& e3,
const E& e4,
const E& e5,
const E& e6)
369 { assert(N==7);(*this)[0]=e0;(*this)[1]=e1;(*this)[2]=e2;
370 (*this)[3]=e3;(*this)[4]=e4;(*this)[5]=e5;(*this)[6]=e6; }
371 Row(
const E& e0,
const E& e1,
const E& e2,
const E& e3,
const E& e4,
const E& e5,
const E& e6,
const E& e7)
372 { assert(N==8);(*this)[0]=e0;(*this)[1]=e1;(*this)[2]=e2;
373 (*this)[3]=e3;(*this)[4]=e4;(*this)[5]=e5;(*this)[6]=e6;(*this)[7]=e7; }
374 Row(
const E& e0,
const E& e1,
const E& e2,
const E& e3,
const E& e4,
const E& e5,
const E& e6,
const E& e7,
const E& e8)
375 { assert(N==9);(*this)[0]=e0;(*this)[1]=e1;(*this)[2]=e2;
376 (*this)[3]=e3;(*this)[4]=e4;(*this)[5]=e5;(*this)[6]=e6;(*this)[7]=e7;(*this)[8]=e8; }
380 template <
class EE>
explicit Row(
const EE* p)
381 { assert(p);
for(
int i=0;i<N;++i) d[i*STRIDE]=p[i]; }
383 { assert(p);
for(
int i=0;i<N;++i) d[i*STRIDE]=p[i];
return *
this; }
391 {
for(
int i=0;i<N;++i) d[i*STRIDE] += r[i];
return *
this; }
393 {
for(
int i=0;i<N;++i) d[i*STRIDE] -= -(r[i]);
return *
this; }
395 {
for(
int i=0;i<N;++i) d[i*STRIDE] -= r[i];
return *
this; }
397 {
for(
int i=0;i<N;++i) d[i*STRIDE] += -(r[i]);
return *
this; }
425 template <
int MatNCol,
class EE,
int CS,
int RS>
449 const E&
operator[](
int i)
const { assert(0 <= i && i < N);
return d[i*STRIDE]; }
450 E&
operator[](
int i) { assert(0 <= i && i < N);
return d[i*STRIDE]; }
474 for (
int j=0; j<N; ++j)
476 return elementwiseNormalized;
495 {
return *
reinterpret_cast<const TPosTrans*
>(
this); }
497 {
return *
reinterpret_cast<TPosTrans*
>(
this); }
505 const EImag* p =
reinterpret_cast<const EImag*
>(
this);
506 return *
reinterpret_cast<const TImag*
>(p+offs);
510 EImag* p =
reinterpret_cast<EImag*
>(
this);
511 return *
reinterpret_cast<TImag*
>(p+offs);
529 for (
int j=0; j<N; ++j) result[j] = (*
this)[j] * e;
535 for (
int j=0; j<N; ++j) result[j] = e * (*
this)[j];
544 for (
int j=0; j<N; ++j) result[j] = (*
this)[j] / e;
550 for (
int j=0; j<N; ++j) result[j] = e / (*
this)[j];
557 for (
int j=0; j<N; ++j) result[j] = (*
this)[j] + e;
565 for (
int j=0; j<N; ++j) result[j] = (*
this)[j] - e;
571 for (
int j=0; j<N; ++j) result[j] = e - (*
this)[j];
587 {
for(
int i=0;i<N;++i) d[i*STRIDE] = ee;
return *
this; }
589 {
for(
int i=0;i<N;++i) d[i*STRIDE] += ee;
return *
this; }
591 {
for(
int i=0;i<N;++i) d[i*STRIDE] -= ee;
return *
this; }
593 {
for(
int i=0;i<N;++i) d[i*STRIDE] = ee - d[i*STRIDE];
return *
this; }
595 {
for(
int i=0;i<N;++i) d[i*STRIDE] *= ee;
return *
this; }
597 {
for(
int i=0;i<N;++i) d[i*STRIDE] = ee * d[i*STRIDE];
return *
this; }
599 {
for(
int i=0;i<N;++i) d[i*STRIDE] /= ee;
return *
this; }
601 {
for(
int i=0;i<N;++i) d[i*STRIDE] = ee / d[i*STRIDE];
return *
this; }
632 assert(0 <= j && j + NN <= N);
642 assert(0 <= j && j + NN <= N);
651 assert(0 <= j && j + N <= NN);
659 assert(0 <= j && j + N <= NN);
667 assert(0 <= p && p < N);
670 for (
int i=0; i<N-1; ++i, ++nxt) {
672 out[i] = (*this)[nxt];
694 assert(0 <= p && p <= N);
698 for (
int i=0; i<N; ++i, ++nxt) {
699 if (i==p) out[nxt++] = v;
700 out[nxt] = (*this)[i];
707 static const Row&
getAs(
const ELT* p) {
return *
reinterpret_cast<const Row*
>(p);}
719 for (
int j=0; j<N; ++j)
728 bool seenInf =
false;
729 for (
int j=0; j<N; ++j) {
730 const ELT& e = (*this)[j];
743 for (
int j=0; j<N; ++j)
755 template <
class E2,
int CS2>
757 for (
int j=0; j<N; ++j)
766 template <
class E2,
int CS2>
780 for (
int j=0; j<N; ++j)
795template <
int N,
class E1,
int S1,
class E2,
int S2>
inline
796typename Row<N,E1,S1>::template Result< Row<N,E2,S2> >::Add
799 ::AddOp::perform(l,r);
803template <
int N,
class E1,
int S1,
class E2,
int S2>
inline
804typename Row<N,E1,S1>::template Result< Row<N,E2,S2> >::Sub
807 ::SubOp::perform(l,r);
811template <
int N,
class E1,
int S1,
class E2,
int S2>
inline bool
813 for (
int i=0; i < N; ++i)
if (l[i] != r[i])
return false;
817template <
int N,
class E1,
int S1,
class E2,
int S2>
inline bool
821template <
int N,
class E1,
int S1,
class E2,
int S2>
inline bool
823{
for (
int i=0; i < N; ++i)
if (l[i] >= r[i])
return false;
826template <
int N,
class E1,
int S1,
class E2>
inline bool
828{
for (
int i=0; i < N; ++i)
if (v[i] >= e)
return false;
832template <
int N,
class E1,
int S1,
class E2,
int S2>
inline bool
834{
for (
int i=0; i < N; ++i)
if (l[i] <= r[i])
return false;
837template <
int N,
class E1,
int S1,
class E2>
inline bool
839{
for (
int i=0; i < N; ++i)
if (v[i] <= e)
return false;
844template <
int N,
class E1,
int S1,
class E2,
int S2>
inline bool
846{
for (
int i=0; i < N; ++i)
if (l[i] > r[i])
return false;
850template <
int N,
class E1,
int S1,
class E2>
inline bool
852{
for (
int i=0; i < N; ++i)
if (v[i] > e)
return false;
857template <
int N,
class E1,
int S1,
class E2,
int S2>
inline bool
859{
for (
int i=0; i < N; ++i)
if (l[i] < r[i])
return false;
863template <
int N,
class E1,
int S1,
class E2>
inline bool
865{
for (
int i=0; i < N; ++i)
if (v[i] < e)
return false;
879template <
int N,
class E,
int S>
inline
880typename Row<N,E,S>::template Result<float>::Mul
883template <
int N,
class E,
int S>
inline
884typename Row<N,E,S>::template Result<float>::Mul
887template <
int N,
class E,
int S>
inline
888typename Row<N,E,S>::template Result<double>::Mul
891template <
int N,
class E,
int S>
inline
892typename Row<N,E,S>::template Result<double>::Mul
896template <
int N,
class E,
int S>
inline
897typename Row<N,E,S>::template Result<typename CNT<E>::Precision>::Mul
899template <
int N,
class E,
int S>
inline
900typename Row<N,E,S>::template Result<typename CNT<E>::Precision>::Mul
906template <
int N,
class E,
int S,
class R>
inline
907typename Row<N,E,S>::template Result<std::complex<R> >::Mul
910template <
int N,
class E,
int S,
class R>
inline
911typename Row<N,E,S>::template Result<std::complex<R> >::Mul
915template <
int N,
class E,
int S,
class R>
inline
916typename Row<N,E,S>::template Result<std::complex<R> >::Mul
918template <
int N,
class E,
int S,
class R>
inline
919typename Row<N,E,S>::template Result<std::complex<R> >::Mul
923template <
int N,
class E,
int S,
class R>
inline
924typename Row<N,E,S>::template Result<typename negator<R>::StdNumber>::Mul
926template <
int N,
class E,
int S,
class R>
inline
927typename Row<N,E,S>::template Result<typename negator<R>::StdNumber>::Mul
936template <
int N,
class E,
int S>
inline
937typename Row<N,E,S>::template Result<float>::Dvd
940template <
int N,
class E,
int S>
inline
941typename CNT<float>::template Result<Row<N,E,S> >::Dvd
945template <
int N,
class E,
int S>
inline
946typename Row<N,E,S>::template Result<double>::Dvd
949template <
int N,
class E,
int S>
inline
950typename CNT<double>::template Result<Row<N,E,S> >::Dvd
955template <
int N,
class E,
int S>
inline
956typename Row<N,E,S>::template Result<typename CNT<E>::Precision>::Dvd
958template <
int N,
class E,
int S>
inline
966template <
int N,
class E,
int S,
class R>
inline
967typename Row<N,E,S>::template Result<std::complex<R> >::Dvd
970template <
int N,
class E,
int S,
class R>
inline
971typename CNT<std::complex<R> >::template Result<Row<N,E,S> >::Dvd
976template <
int N,
class E,
int S,
class R>
inline
977typename Row<N,E,S>::template Result<std::complex<R> >::Dvd
979template <
int N,
class E,
int S,
class R>
inline
980typename CNT<std::complex<R> >::template Result<Row<N,E,S> >::Dvd
984template <
int N,
class E,
int S,
class R>
inline
985typename Row<N,E,S>::template Result<typename negator<R>::StdNumber>::Dvd
987template <
int N,
class E,
int S,
class R>
inline
988typename CNT<R>::template Result<Row<N,E,S> >::Dvd
999template <
int N,
class E,
int S>
inline
1000typename Row<N,E,S>::template Result<float>::Add
1003template <
int N,
class E,
int S>
inline
1004typename Row<N,E,S>::template Result<float>::Add
1007template <
int N,
class E,
int S>
inline
1008typename Row<N,E,S>::template Result<double>::Add
1011template <
int N,
class E,
int S>
inline
1012typename Row<N,E,S>::template Result<double>::Add
1016template <
int N,
class E,
int S>
inline
1017typename Row<N,E,S>::template Result<typename CNT<E>::Precision>::Add
1019template <
int N,
class E,
int S>
inline
1020typename Row<N,E,S>::template Result<typename CNT<E>::Precision>::Add
1026template <
int N,
class E,
int S,
class R>
inline
1027typename Row<N,E,S>::template Result<std::complex<R> >::Add
1030template <
int N,
class E,
int S,
class R>
inline
1031typename Row<N,E,S>::template Result<std::complex<R> >::Add
1035template <
int N,
class E,
int S,
class R>
inline
1036typename Row<N,E,S>::template Result<std::complex<R> >::Add
1038template <
int N,
class E,
int S,
class R>
inline
1039typename Row<N,E,S>::template Result<std::complex<R> >::Add
1043template <
int N,
class E,
int S,
class R>
inline
1044typename Row<N,E,S>::template Result<typename negator<R>::StdNumber>::Add
1046template <
int N,
class E,
int S,
class R>
inline
1047typename Row<N,E,S>::template Result<typename negator<R>::StdNumber>::Add
1053template <
int N,
class E,
int S>
inline
1054typename Row<N,E,S>::template Result<float>::Sub
1057template <
int N,
class E,
int S>
inline
1058typename CNT<float>::template Result<Row<N,E,S> >::Sub
1062template <
int N,
class E,
int S>
inline
1063typename Row<N,E,S>::template Result<double>::Sub
1066template <
int N,
class E,
int S>
inline
1067typename CNT<double>::template Result<Row<N,E,S> >::Sub
1072template <
int N,
class E,
int S>
inline
1073typename Row<N,E,S>::template Result<typename CNT<E>::Precision>::Sub
1075template <
int N,
class E,
int S>
inline
1083template <
int N,
class E,
int S,
class R>
inline
1084typename Row<N,E,S>::template Result<std::complex<R> >::Sub
1087template <
int N,
class E,
int S,
class R>
inline
1088typename CNT<std::complex<R> >::template Result<Row<N,E,S> >::Sub
1093template <
int N,
class E,
int S,
class R>
inline
1094typename Row<N,E,S>::template Result<std::complex<R> >::Sub
1096template <
int N,
class E,
int S,
class R>
inline
1097typename CNT<std::complex<R> >::template Result<Row<N,E,S> >::Sub
1101template <
int N,
class E,
int S,
class R>
inline
1102typename Row<N,E,S>::template Result<typename negator<R>::StdNumber>::Sub
1104template <
int N,
class E,
int S,
class R>
inline
1105typename CNT<R>::template Result<Row<N,E,S> >::Sub
1110template <
int N,
class E,
int S,
class CHAR,
class TRAITS>
inline
1111std::basic_ostream<CHAR,TRAITS>&
1112operator<<(std::basic_ostream<CHAR,TRAITS>& o,
const Row<N,E,S>& v) {
1113 o <<
"[" << v[0];
for(
int i=1;i<N;++i) o<<
','<<v[i]; o<<
']';
return o;
1118template <
int N,
class E,
int S,
class CHAR,
class TRAITS>
inline
1119std::basic_istream<CHAR,TRAITS>&
1121 CHAR openBracket, closeBracket;
1122 is >> openBracket;
if (is.fail())
return is;
1123 if (openBracket==CHAR(
'('))
1124 closeBracket = CHAR(
')');
1125 else if (openBracket==CHAR(
'['))
1126 closeBracket = CHAR(
']');
1128 closeBracket = CHAR(0);
1129 is.unget();
if (is.fail())
return is;
1132 for (
int i=0; i < N; ++i) {
1134 if (is.fail())
return is;
1136 CHAR c; is >> c;
if (is.fail())
return is;
1137 if (c !=
',') is.unget();
1138 if (is.fail())
return is;
1144 if (closeBracket != CHAR(0)) {
1145 CHAR closer; is >> closer;
if (is.fail())
return is;
1146 if (closer != closeBracket) {
1147 is.unget();
if (is.fail())
return is;
1148 is.setstate( std::ios::failbit );
Mandatory first inclusion for any Simbody source or header file.
Specialized information about Composite Numerical Types which allows us to define appropriate templat...
Definition: CompositeNumericalTypes.h:136
static K getNaN()
Definition: CompositeNumericalTypes.h:246
K::ULessScalar ULessScalar
Definition: CompositeNumericalTypes.h:161
static double getDefaultTolerance()
Definition: CompositeNumericalTypes.h:269
K::ScalarNormSq ScalarNormSq
Definition: CompositeNumericalTypes.h:166
K::StdNumber StdNumber
Definition: CompositeNumericalTypes.h:163
static TSqrt sqrt(const K &t)
Definition: CompositeNumericalTypes.h:239
K::TSqHermT TSqHermT
Definition: CompositeNumericalTypes.h:146
K::TSqrt TSqrt
Definition: CompositeNumericalTypes.h:154
K::TInvert TInvert
Definition: CompositeNumericalTypes.h:157
K::TNormalize TNormalize
Definition: CompositeNumericalTypes.h:158
K::TWithoutNegator TWithoutNegator
Definition: CompositeNumericalTypes.h:140
K::TReal TReal
Definition: CompositeNumericalTypes.h:141
static TStandard standardize(const K &t)
Definition: CompositeNumericalTypes.h:241
K::THerm THerm
Definition: CompositeNumericalTypes.h:144
K::TPosTrans TPosTrans
Definition: CompositeNumericalTypes.h:145
K::TNeg TNeg
Definition: CompositeNumericalTypes.h:139
K::TStandard TStandard
Definition: CompositeNumericalTypes.h:156
K::TComplex TComplex
Definition: CompositeNumericalTypes.h:143
K::TSqTHerm TSqTHerm
Definition: CompositeNumericalTypes.h:147
K::TImag TImag
Definition: CompositeNumericalTypes.h:142
K::Precision Precision
Definition: CompositeNumericalTypes.h:164
K::Scalar Scalar
Definition: CompositeNumericalTypes.h:160
K::TAbs TAbs
Definition: CompositeNumericalTypes.h:155
K::Number Number
Definition: CompositeNumericalTypes.h:162
This class represents a small matrix whose size is known at compile time, containing elements of any ...
Definition: Mat.h:97
Definition: NTraits.h:436
This is a fixed-length row vector designed for no-overhead inline computation.
Definition: Row.h:132
const TImag & imag() const
Definition: Row.h:503
TSqrt sqrt() const
Definition: Row.h:231
Row & operator/=(const EE &e)
Definition: Row.h:582
Row< N, typename CNT< EE >::template Result< E >::Dvd > scalarDivideFromLeft(const EE &e) const
Definition: Row.h:548
Row< N, EAbs, 1 > TAbs
Definition: Row.h:199
const TPosTrans & positionalTranspose() const
Definition: Row.h:494
Vec< N, ESqrt, 1 > TSqrt
Definition: Row.h:198
EULessScalar ULessScalar
Definition: Row.h:210
TNormalize normalize() const
Definition: Row.h:469
THerm & updTranspose()
Definition: Row.h:492
Row & scalarMinusEqFromLeft(int ee)
Definition: Row.h:610
Row(const E &e0, const E &e1, const E &e2)
Definition: Row.h:358
bool isNumericallyEqual(const Row< N, E2, CS2 > &r, double tol) const
Test whether this row is numerically equal to some other row with the same shape, using a specified t...
Definition: Row.h:756
Row & operator=(const EE *p)
Definition: Row.h:382
THerm & operator~()
Definition: Row.h:486
void setToNaN()
Set every scalar in this Row to NaN; this is the default initial value in Debug builds,...
Definition: Row.h:616
TNeg & operator-()
Definition: Row.h:484
Row(const Row< N, EE, SS > &vv)
Definition: Row.h:338
bool isNumericallyEqual(const Row< N, E2, CS2 > &r) const
Test whether this row vector is numerically equal to some other row with the same shape,...
Definition: Row.h:767
Row & operator*=(const EE &e)
Definition: Row.h:581
Row< N, ENeg, STRIDE > TNeg
Definition: Row.h:182
TReal & real()
Definition: Row.h:500
Row & operator=(const Row &src)
Definition: Row.h:319
TStandard standardize() const
Definition: Row.h:246
Row< N, EStandard, 1 > TStandard
Definition: Row.h:200
E & operator[](int i)
Definition: Row.h:450
Row< N, typename CNT< E >::template Result< EE >::Mul > scalarMultiply(const EE &e) const
Definition: Row.h:527
static Row & updAs(ELT *p)
Recast a writable ordinary C++ array E[] to a writable Row<N,E,S>; assumes compatible length,...
Definition: Row.h:710
Row & operator-=(const EE &e)
Definition: Row.h:580
Row(const E &e0, const E &e1, const E &e2, const E &e3, const E &e4, const E &e5)
Definition: Row.h:365
EScalar Scalar
Definition: Row.h:209
const TReal & real() const
Definition: Row.h:499
const THerm & operator~() const
Definition: Row.h:485
Row & scalarEq(const EE &ee)
Definition: Row.h:586
const TNeg & negate() const
Definition: Row.h:488
Row< N, EWithoutNegator, STRIDE > TWithoutNegator
Definition: Row.h:183
Row & operator+=(const Row< N, negator< EE >, SS > &r)
Definition: Row.h:392
ScalarNormSq scalarNormSqr() const
Definition: Row.h:222
E TCol
Definition: Row.h:194
Row & scalarTimesEq(int ee)
Definition: Row.h:608
Row(const E &e)
Definition: Row.h:343
bool isInf() const
Return true if any element of this Row contains a +Infinity or -Infinity somewhere but no element con...
Definition: Row.h:727
EScalarNormSq TSqTHerm
Definition: Row.h:205
Row< N+1, ELT, 1 > insert1(int p, const EE &v) const
Return a row one larger than this one by inserting an element before the indicated one.
Definition: Row.h:693
Row(const Row< N, E, SS > &src)
Definition: Row.h:326
const Row< NN, ELT, STRIDE > & getSubRow(int j) const
Extract a const reference to a sub-Row with size known at compile time.
Definition: Row.h:631
static Row & updSubRow(Row< NN, ELT, STRIDE > &r, int j)
Extract a subvector of type Row from a longer one that has the same element type and stride,...
Definition: Row.h:658
Row< N, EReal, STRIDE *CNT< E >::RealStrideFactor > TReal
Definition: Row.h:186
Row & scalarDivideEq(const EE &ee)
Definition: Row.h:598
Row & operator=(const Row< N, EE, SS > &vv)
Definition: Row.h:386
Vec< N, EInvert, 1 > TInvert
Definition: Row.h:201
EStandard sum() const
Definition: Row.h:254
Row< N, typename CNT< E >::template Result< EE >::Add > conformingAdd(const Row< N, EE, SS > &r) const
Vector addition – use operator+ instead.
Definition: Row.h:404
EStdNumber StdNumber
Definition: Row.h:212
Row< NN, ELT, STRIDE > & updSubRow(int j)
Extract a writable reference to a sub-Row with size known at compile time.
Definition: Row.h:641
Row< N-1, ELT, 1 > drop1(int p) const
Return a row one smaller than this one by dropping the element at the indicated position p.
Definition: Row.h:666
Row & operator-=(const Row< N, EE, SS > &r)
Definition: Row.h:394
static const Row & getAs(const ELT *p)
Recast an ordinary C++ array E[] to a const Row<N,E,S>; assumes compatible length,...
Definition: Row.h:707
const TWithoutNegator & castAwayNegatorIfAny() const
Definition: Row.h:514
EPrecision Precision
Definition: Row.h:213
Row(const E &e0, const E &e1, const E &e2, const E &e3, const E &e4, const E &e5, const E &e6, const E &e7, const E &e8)
Definition: Row.h:374
const Row & operator+() const
Definition: Row.h:482
Row< N, typename CNT< E >::template Result< EE >::Sub > conformingSubtract(const Row< N, EE, SS > &r) const
Vector subtraction – use operator- instead.
Definition: Row.h:412
static int ncol()
Definition: Row.h:218
Row(int i)
Definition: Row.h:352
static int nrow()
Definition: Row.h:217
static Row< N, ELT, 1 > getNaN()
Return a Row of the same length and element type as this one but with all elements set to NaN.
Definition: Row.h:715
Row & operator-=(const Row< N, negator< EE >, SS > &r)
Definition: Row.h:396
Row< N, typename CNT< E >::template Result< EE >::Dvd > scalarDivide(const EE &e) const
Definition: Row.h:542
Row & scalarDivideEqFromLeft(const EE &ee)
Definition: Row.h:600
Row(const Row &src)
Definition: Row.h:316
Row< N, ENormalize, 1 > TNormalize
Definition: Row.h:202
Row & scalarMinusEq(int ee)
Definition: Row.h:607
Row(const E &e0, const E &e1)
Definition: Row.h:356
Vec< N, E, STRIDE > TPosTrans
Definition: Row.h:191
Row & scalarMinusEq(const EE &ee)
Definition: Row.h:590
Row< N, typename CNT< E >::template Result< EE >::Sub > scalarSubtract(const EE &e) const
Definition: Row.h:563
Row(const E &e0, const E &e1, const E &e2, const E &e3, const E &e4)
Definition: Row.h:362
Row & scalarTimesEqFromLeft(int ee)
Definition: Row.h:611
bool isFinite() const
Return true if no element of this Row contains an Infinity or a NaN anywhere.
Definition: Row.h:742
E & operator()(int i)
Definition: Row.h:452
Row< N, EImag, STRIDE *CNT< E >::RealStrideFactor > TImag
Definition: Row.h:188
static double getDefaultTolerance()
For approximate comparisons, the default tolerance to use for a vector is the same as its elements' d...
Definition: Row.h:751
Row(const E &e0, const E &e1, const E &e2, const E &e3)
Definition: Row.h:360
Row & operator+=(const Row< N, EE, SS > &r)
Definition: Row.h:390
Row & scalarTimesEq(const EE &ee)
Definition: Row.h:594
Row(const EE *p)
Definition: Row.h:380
Row< N, typename CNT< E >::template Result< EE >::Add > scalarAdd(const EE &e) const
Definition: Row.h:555
Row< N, E, STRIDE > T
Definition: Row.h:181
static const Row & getSubRow(const Row< NN, ELT, STRIDE > &r, int j)
Extract a subvector of type Row from a longer one that has the same element type and stride,...
Definition: Row.h:650
Row(const Row< N, ENeg, SS > &src)
Definition: Row.h:332
CNT< ScalarNormSq >::TSqrt norm() const
Definition: Row.h:456
Row< MatNCol, typename CNT< E >::template Result< EE >::Mul > conformingMultiply(const Mat< N, MatNCol, EE, CS, RS > &m) const
Row times a conforming matrix, row=row*mat – use operator* instead.
Definition: Row.h:427
Row< N, typename CNT< EE >::template Result< E >::Sub > scalarSubtractFromLeft(const EE &e) const
Definition: Row.h:569
Row & scalarTimesEqFromLeft(const EE &ee)
Definition: Row.h:596
Row & scalarDivideEq(int ee)
Definition: Row.h:609
SymMat< N, ESqHermT > TSqHermT
Definition: Row.h:204
ScalarNormSq normSqr() const
Definition: Row.h:454
const E & operator[](int i) const
Definition: Row.h:449
const TNeg & operator-() const
Definition: Row.h:483
static int size()
Definition: Row.h:216
Row< N, typename CNT< EE >::template Result< E >::Mul > scalarMultiplyFromLeft(const EE &e) const
Definition: Row.h:533
bool isNaN() const
Return true if any element of this Row contains a NaN anywhere.
Definition: Row.h:718
Row(const E &e0, const E &e1, const E &e2, const E &e3, const E &e4, const E &e5, const E &e6, const E &e7)
Definition: Row.h:371
TPosTrans & updPositionalTranspose()
Definition: Row.h:496
Row & operator+=(const EE &e)
Definition: Row.h:579
TNeg & updNegate()
Definition: Row.h:489
Row()
Definition: Row.h:307
E TElement
Definition: Row.h:192
Row & scalarPlusEq(const EE &ee)
Definition: Row.h:588
TInvert invert() const
Definition: Row.h:480
Row< N, typename CNT< E >::template Result< EE >::Dvd > elementwiseDivide(const Row< N, EE, SS > &r) const
Elementwise divide (Matlab .
Definition: Row.h:443
EScalarNormSq ScalarNormSq
Definition: Row.h:214
Row & scalarPlusEq(int ee)
Definition: Row.h:606
Row(const ENeg &ne)
Definition: Row.h:347
const E & operator()(int i) const
Definition: Row.h:451
@ IsULessScalar
Definition: Row.h:174
@ NPackedElements
Definition: Row.h:162
@ RealStrideFactor
Definition: Row.h:168
@ ArgDepth
Definition: Row.h:170
@ NActualScalars
Definition: Row.h:164
@ NActualElements
Definition: Row.h:163
@ RowSpacing
Definition: Row.h:165
@ SignInterpretation
Definition: Row.h:178
@ NRows
Definition: Row.h:160
@ ImagOffset
Definition: Row.h:167
@ IsPrecision
Definition: Row.h:177
@ IsNumber
Definition: Row.h:175
@ ColSpacing
Definition: Row.h:166
@ IsStdNumber
Definition: Row.h:176
@ NCols
Definition: Row.h:161
@ IsScalar
Definition: Row.h:173
Row< N, EComplex, STRIDE > TComplex
Definition: Row.h:189
Row TRow
Definition: Row.h:193
void setToZero()
Set every scalar in this Row to zero.
Definition: Row.h:621
CNT< E >::template Result< EE >::Mul conformingMultiply(const Vec< N, EE, SS > &r) const
Same as dot product (s = row*col) – use operator* or dot() instead.
Definition: Row.h:420
Row & scalarDivideEqFromLeft(int ee)
Definition: Row.h:612
Row & scalarEq(int ee)
Definition: Row.h:605
bool isNumericallyEqual(const ELT &e, double tol=getDefaultTolerance()) const
Test whether every element of this row vector is numerically equal to the given element,...
Definition: Row.h:777
Row< N+1, ELT, 1 > append1(const EE &v) const
Return a row one larger than this one by adding an element to the end.
Definition: Row.h:680
Row & scalarMinusEqFromLeft(const EE &ee)
Definition: Row.h:592
TAbs abs() const
Definition: Row.h:240
Row(const E &e0, const E &e1, const E &e2, const E &e3, const E &e4, const E &e5, const E &e6)
Definition: Row.h:368
TWithoutNegator & updCastAwayNegatorIfAny()
Definition: Row.h:515
Row< N, typename CNT< E >::template Result< EE >::Mul > elementwiseMultiply(const Row< N, EE, SS > &r) const
Elementwise multiply (Matlab .
Definition: Row.h:435
TImag & imag()
Definition: Row.h:508
const THerm & transpose() const
Definition: Row.h:491
ENumber Number
Definition: Row.h:211
Vec< N, EHerm, STRIDE > THerm
Definition: Row.h:190
This is a small, fixed-size symmetric or Hermitian matrix designed for no-overhead inline computation...
Definition: SymMat.h:87
This is a fixed-length column vector designed for no-overhead inline computation.
Definition: Vec.h:184
SimTK::conjugate<R> should be instantiated only for float, double.
Definition: conjugate.h:178
negator<N>, where N is a number type (real, complex, conjugate), is represented in memory identically...
Definition: negator.h:75
NTraits< N >::StdNumber StdNumber
Definition: negator.h:107
void copy(Row< 1, E1, S1 > &r1, const Row< 1, E2, S2 > &r2)
Definition: Row.h:105
void elementwiseDivide(const Row< 1, E1, S1 > &r1, const Row< 1, E2, S2 > &r2, Row< 1, typename CNT< E1 >::template Result< E2 >::Dvd > &result)
Definition: Row.h:90
void conformingSubtract(const Row< 1, E1, S1 > &r1, const Row< 1, E2, S2 > &r2, Row< 1, typename CNT< E1 >::template Result< E2 >::Sub > &result)
Definition: Row.h:60
void conformingAdd(const Row< 1, E1, S1 > &r1, const Row< 1, E2, S2 > &r2, Row< 1, typename CNT< E1 >::template Result< E2 >::Add > &result)
Definition: Row.h:45
void elementwiseMultiply(const Row< 1, E1, S1 > &r1, const Row< 1, E2, S2 > &r2, Row< 1, typename CNT< E1 >::template Result< E2 >::Mul > &result)
Definition: Row.h:75
This is the top-level SimTK namespace into which all SimTK names are placed to avoid collision with o...
Definition: Assembler.h:37
RowVectorBase< typename CNT< ELEM >::TAbs > abs(const RowVectorBase< ELEM > &v)
Definition: VectorMath.h:120
Matrix_< E > operator*(const MatrixBase< E > &l, const typename CNT< E >::StdNumber &r)
Definition: BigMatrix.h:605
Matrix_< E > operator/(const MatrixBase< E > &l, const typename CNT< E >::StdNumber &r)
Definition: BigMatrix.h:613
std::basic_istream< CHAR, TRAITS > & operator>>(std::basic_istream< CHAR, TRAITS > &is, conjugate< R > &c)
Definition: conjugate.h:505
ELEM max(const VectorBase< ELEM > &v)
Definition: VectorMath.h:251
bool operator>(const L &left, const R &right)
Definition: SimTKcommon/include/SimTKcommon/internal/common.h:647
@ MAX_RESOLVED_DEPTH
Definition: CompositeNumericalTypes.h:120
Matrix_< typename CNT< E1 >::template Result< E2 >::Add > operator+(const MatrixBase< E1 > &l, const MatrixBase< E2 > &r)
Definition: BigMatrix.h:568
std::ostream & operator<<(std::ostream &o, const ContactForce &f)
Definition: CompliantContactSubsystem.h:387
Matrix_< typename CNT< E1 >::template Result< E2 >::Sub > operator-(const MatrixBase< E1 > &l, const MatrixBase< E2 > &r)
Definition: BigMatrix.h:584
bool operator>=(const L &left, const R &right)
Definition: SimTKcommon/include/SimTKcommon/internal/common.h:659
bool operator<(const Row< N, E1, S1 > &l, const Row< N, E2, S2 > &r)
bool = v1[i] < v2[i], for all elements i
Definition: Row.h:822
bool operator<=(const L &left, const R &right)
Definition: SimTKcommon/include/SimTKcommon/internal/common.h:653
bool operator==(const PhiMatrix &p1, const PhiMatrix &p2)
Definition: SpatialAlgebra.h:791
bool operator!=(const L &left, const R &right)
Definition: SimTKcommon/include/SimTKcommon/internal/common.h:641
Row< N, typename CNT< E >::template Result< P >::Add, 1 > Add
Definition: Row.h:266
Row< N, typename CNT< E >::template Result< P >::Mul, 1 > Mul
Definition: Row.h:264
Row< N, typename CNT< E >::template Result< P >::Sub, 1 > Sub
Definition: Row.h:267
Row< N, typename CNT< E >::template Result< P >::Dvd, 1 > Dvd
Definition: Row.h:265
AddOp::Type Add
Definition: Row.h:292
MulCNTsNonConforming< 1, N, ArgDepth, Row, ColSpacing, RowSpacing, CNT< P >::NRows, CNT< P >::NCols, CNT< P >::ArgDepth, P, CNT< P >::ColSpacing, CNT< P >::RowSpacing > MulOpNonConforming
Definition: Row.h:280
AddCNTs< 1, N, ArgDepth, Row, ColSpacing, RowSpacing, CNT< P >::NRows, CNT< P >::NCols, CNT< P >::ArgDepth, P, CNT< P >::ColSpacing, CNT< P >::RowSpacing > AddOp
Definition: Row.h:291
MulOp::Type Mul
Definition: Row.h:276
SubCNTs< 1, N, ArgDepth, Row, ColSpacing, RowSpacing, CNT< P >::NRows, CNT< P >::NCols, CNT< P >::ArgDepth, P, CNT< P >::ColSpacing, CNT< P >::RowSpacing > SubOp
Definition: Row.h:296
MulOpNonConforming::Type MulNon
Definition: Row.h:281
DvdCNTs< 1, N, ArgDepth, Row, ColSpacing, RowSpacing, CNT< P >::NRows, CNT< P >::NCols, CNT< P >::ArgDepth, P, CNT< P >::ColSpacing, CNT< P >::RowSpacing > DvdOp
Definition: Row.h:286
MulCNTs< 1, N, ArgDepth, Row, ColSpacing, RowSpacing, CNT< P >::NRows, CNT< P >::NCols, CNT< P >::ArgDepth, P, CNT< P >::ColSpacing, CNT< P >::RowSpacing > MulOp
Definition: Row.h:275
DvdOp::Type Dvd
Definition: Row.h:287
SubOp::Type Sub
Definition: Row.h:297
Row< N, P > Type
Definition: Row.h:302